首页> 外文期刊>Journal of Biomechanics >Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour
【24h】

Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour

机译:切削工具渗入皮质骨:各向异性力学行为的实验和数值研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

An anisotropic mechanical behaviour of cortical bone and its intrinsic hierarchical microstructure act as protective mechanisms to prevent catastrophic failure due to natural loading conditions; however, they increase the extent of complexity of a penetration process in the case of orthopaedic surgery. Experimental results available in literature provide only limited information about processes in the vicinity of a tool-bone interaction zone. Also, available numerical models the bone-cutting process do not account for material anisotropy or the effect of damage mechanisms. In this study, both experimental and numerical studies were conducted to address these issues and to elucidate the effect of anisotropic mechanical behaviour of cortical bone tissue on penetration of a sharp cutting tool. First, a set of tool-penetration experiments was performed in directions parallel and perpendicular to bone axis. Also, these experiments included bone samples cut from four different cortices to evaluate the effect of spatial variability and material anisotropy on the penetration processes. Distinct deformation and damage mechanisms linked to different microstructure orientations were captured using a micro-lens high-speed camera. Then, a novel hybrid FE model employing a smoothed-particle-hydrodynamic domain embedded into a continuum FE one was developed based on the experimental configuration to characterise the anisotropic deformation and damage behaviour of cortical bone under a penetration process. The results of our study revealed a clear anisotropic material behaviour of the studied cortical bone tissue and the influence of the underlying microstructure. The proposed FE model reflected adequately the experimental results and demonstrated the need for the use of the anisotropic and damage material model to analyse cutting of the cortical-bone tissue.
机译:皮质骨的各向异性力学行为及其固有的分层微观结构可作为保护机制,防止由于自然载荷条件而导致的灾难性故障;但是,它们增加了整形外科手术中穿透过程的复杂程度。文献中提供的实验结果仅提供了有关工具-骨骼相互作用区域附近过程的有限信息。同样,可用的数值模型切割骨骼的过程也不能解决材料各向异性或损伤机制的影响。在这项研究中,进行了实验和数值研究,以解决这些问题并阐明皮质骨组织的各向异性力学行为对锋利切削工具穿透的影响。首先,在平行于和垂直于骨轴的方向上进行了一套工具穿透实验。此外,这些实验还包括从四个不同皮质中切出的骨骼样品,以评估空间变异性和材料各向异性对渗透过程的影响。使用微透镜高速相机捕获了与不同微观结构方向相关的不同变形和损坏机制。然后,基于实验配置,开发了一种新的混合有限元模型,该模型采用了嵌入到连续有限元中的平滑粒子流体动力学域,以表征在穿透过程中皮质骨的各向异性变形和损伤行为。我们的研究结果表明,所研究的皮质骨组织具有明显的各向异性材料行为,并且受到底层微观结构的影响。提出的有限元模型充分反映了实验结果,并证明了需要使用各向异性和损伤材料模型来分析皮骨组织的切割。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号