...
首页> 外文期刊>Journal of biomechanical engineering. >Experimental Techniques for Studying Poroelasticity in Brain Phantom Gels Under High Flow Microinfusion
【24h】

Experimental Techniques for Studying Poroelasticity in Brain Phantom Gels Under High Flow Microinfusion

机译:高流量微输注研究脑模凝胶中孔隙弹性的实验技术

获取原文
获取原文并翻译 | 示例

摘要

Convection enhanced delivery is an attractive option for the treatment of several neurodegenerative diseases such as Parkinson, Alzheimer, and brain tumors. However, the occurrence of a backflow is a major problem impeding the widespread use of this technique. In this paper, we analyze experimentally the force impact of high flow microinfusion on the deformable gel matrix. To investigate these fluid structure interactions, two optical methods are reported. First, gel stresses during microinfusion were visualized through a linear polariscope. Second, the displacement field was tracked using 400 nm nanobeads as space markers. The corresponding strain and porosity fields were calculated from the experimental observations. Finally, experimental data were used to validate a computational model for fluid flow and deformation in soft porous media. Our studies demonstrate experimentally, the distribution and magnitude of stress and displacement fields near the catheter tip. The effect of fluid traction on porosity and hydraulic conductivity is analyzed. The increase in fluid content in the catheter vicinity enhances the gel hydraulic conductivity. Our computational model takes into account the changes in porosity and hydraulic conductivity. The simulations agree with experimental findings. The experiments quantified solid matrix deformation, due to fluid infusion. Maximum deformations occur in areas of relatively large fluid velocities leading to volumetric strain of the matrix, causing changes in hydraulic conductivity and porosity close to the catheter tip. The gradual expansion of this region with increased porosity leads to decreased hydraulic resistance that may also create an alternative pathway for fluid flow.
机译:对流增强递送是治疗几种神经退行性疾病如帕金森氏症,阿尔茨海默氏病和脑瘤的一种有吸引力的选择。但是,回流的发生是阻碍该技术广泛使用的主要问题。在本文中,我们通过实验分析了高流量微输注对可变形凝胶基质的作用力。为了研究这些流体结构的相互作用,报道了两种光学方法。首先,通过线性偏光镜观察微输注过程中的凝胶应力。其次,使用400 nm纳米珠作为空间标记物跟踪位移场。从实验观察中计算出相应的应变和孔隙率场。最后,实验数据被用于验证软多孔介质中流体流动和变形的计算模型。我们的研究通过实验证明了导管尖端附近应力场和位移场的分布和大小。分析了流体牵引对孔隙率和水力传导率的影响。导管附近流体含量的增加增强了凝胶的水力传导性。我们的计算模型考虑了孔隙度和水力传导率的变化。模拟与实验结果一致。实验量化了由于流体注入导致的固体基质变形。最大变形发生在相对较大的流体速度区域中,从而导致基体的体积应变,从而导致导水管附近的导水率和孔隙率发生变化。具有增加的孔隙率的该区域的逐渐膨胀导致减小的水力阻力,这也可能产生用于流体流动的替代路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号