首页> 外文期刊>Journal of biomechanical engineering. >Collagen Fiber Alignment Does Not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels
【24h】

Collagen Fiber Alignment Does Not Explain Mechanical Anisotropy in Fibroblast Populated Collagen Gels

机译:胶原蛋白纤维排列不能解释成纤维细胞填充胶原蛋白凝胶中的机械各向异性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many load-bearing soft tissues exhibit mechanical anisotropy. In order to understand the behavior of natural tissues and to create tissue engineered replacements, quantitative relationships must be developed between the tissue structures and their mechanical behavior. We used a novel collagen gel system to test the hypothesis that collagen fiber alignment is the primary mechanism for the mechanical anisotropy we have reported in structurally anisotropic gels. Loading constraints applied during culture were used to control the structural organization of the collagen fibers of fibroblast populated collagen gels. Gels constrained uniaxially during culture developed fiber alignment and a high degree of mechanical anisotropy, while gels constrained biaxially remained isotropic with randomly distributed collagen fibers. We hypothesized that the mechanical anisotropy that developed in these gels was due primarily to collagen fiber orientation. We tested this hypothesis using two mathematical models that incorporated measured collagen fiber orientations: a structural continuum model that assumes affine fiber kinematics and a network model that allows for nonaffine fiber kinematics. Collagen fiber mechanical properties were determined by fitting biaxial mechanical test data from isotropic collagen gels. The fiber properties of each isotropic gel were then used to predict the biaxial mechanical behavior of paired anisotropic gels. Both models accurately described the isotropic collagen gel behavior. However, the structural continuum model dramatically underestimated the level of mechanical anisotropy in aligned collagen gels despite incorporation of measured fiber orientations; when estimated remodeling-induced changes in collagen fiber length were included, the continuum model slightly overestimated mechanical anisotropy. The network model provided the closest match to experimental data from aligned collagen gels, but still did not fully explain the observed mechanics. Two different modeling approaches showed that the level of collagen fiber alignment in our uniaxially constrained gels cannot explain the high degree of mechanical anisotropy observed in these gels. Our modeling results suggest that remodeling-induced redistribution of collagen fiber lengths, nonaffine fiber kinematics, or some combination of these effects must also be considered in order to explain the dramatic mechanical anisotropy observed in this collagen gel model system.
机译:许多承重的软组织表现出机械各向异性。为了了解天然组织的行为并创建组织工程替代品,必须在组织结构与其机械行为之间建立定量关系。我们使用一种新颖的胶原蛋白凝胶系统来测试以下假设:胶原蛋白纤维排列是我们在结构各向异性凝胶中报道的机械各向异性的主要机制。在培养过程中施加的负载限制条件被用来控制成纤维细胞填充的胶原蛋白凝胶的胶原蛋白纤维的结构组织。在培养过程中单轴约束的凝胶形成纤维排列和高度的机械各向异性,而在双轴约束下的凝胶则保持各向同性,并具有随机分布的胶原纤维。我们假设在这些凝胶中产生的机械各向异性主要是由于胶原纤维的取向。我们使用两个数学模型测试了这一假设,这些数学模型结合了所测量的胶原纤维取向:一个结构连续体模型(假设仿射纤维运动学)和一个网络模型允许非仿射纤维运动学。胶原纤维的机械性能是通过拟合各向同性胶原凝胶的双轴力学测试数据确定的。然后将各向同性凝胶的纤维性质用于预测成对的各向异性凝胶的双轴力学行为。两种模型均准确描述了各向同性的胶原凝胶行为。然而,尽管结合了测得的纤维取向,结构连续体模型仍大大低估了对齐的胶原蛋白凝胶中的机械各向异性水平。当包括估计的重塑诱导的胶原纤维长度变化时,连续模型会稍微高估机械各向异性。网络模型提供了与对齐的胶原凝胶实验数据最接近的匹配,但仍不能完全解释所观察到的力学。两种不同的建模方法表明,在我们的单轴约束凝胶中胶原纤维排列的水平不能解释在这些凝胶中观察到的高度机械各向异性。我们的建模结果表明,还必须考虑重塑诱导的胶原纤维长度,非仿射纤维运动学或这些影响的某种组合的重新分布,以解释在此胶原凝胶模型系统中观察到的显着机械各向异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号