...
首页> 外文期刊>The Journal of Biochemistry >Inhibition of electron acceptance from ascorbate by the specific N-carbethoxylations of maize cytochrome b561: a common mechanism for the transmembrane electron transfer in cytochrome b561 protein family.
【24h】

Inhibition of electron acceptance from ascorbate by the specific N-carbethoxylations of maize cytochrome b561: a common mechanism for the transmembrane electron transfer in cytochrome b561 protein family.

机译:玉米细胞色素b561的特定N-碳乙氧基化抑制来自抗坏血酸的电子接受:细胞色素b561蛋白质家族中跨膜电子转移的常见机制。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Cytochromes b(561) constitute a novel class of proteins in eukaryotic cells with a number of highly relevant common features including six transmembrane alpha-helices and two haem groups. Of particular interest is the presence of a large number of plant homologues having putative ascorbate- and monodehydroascorbate radical-binding sites. We conducted a diethylpyrocarbonate-modification study employing Zea mays cytochrome b(561) heterologously expressed in Pichia pastoris cells. Pre-treatment of cytochrome b(561) with diethylpyrocarbonate in oxidized form caused N-carbethoxylation of His(86), His(159) and Lys(83), leading to a drastic inhibition of the electron transfer from ascorbate. The activity was protected by the inclusion of ascorbate during the treatment. However, midpoint potentials of two haem centres did show only slight decreases upon the treatment, suggesting that changes in the midpoint potentials were not the major cause of the inhibition. Present results indicated that Zea mays cytochrome b(561) conducted an ascorbate-specific transmembrane electron transfer by utilizing a concerted H(+)/e(-) transfer mechanism and that the specific N-carbethoxylation of haem axial His(86) that would inhibit the removal of a proton from the bound ascorbate was a major cause of the inhibition. On the other hand, Lys(83) might be important for an initial step(s) of the fast electron acceptance from ascorbate.
机译:细胞色素b(561)在真核细胞中构成一类新型蛋白质,具有许多高度相关的共同特征,包括六个跨膜α螺旋和两个血红素基团。特别令人感兴趣的是存在大量具有推定的抗坏血酸和单脱氢抗坏血酸自由基结合位点的植物同系物。我们进行了使用焦油毕赤酵母细胞中异源表达的玉米(Zea mays)细胞色素b(561)进行焦碳酸二乙酯的修饰研究。用氧化形式的焦碳酸二乙酯预处理细胞色素b(561)会导致His(86),His(159)和Lys(83)的N-碳乙氧基化,从而导致对电子从抗坏血酸转移的强烈抑制。在治疗过程中通过加入抗坏血酸来保护活性。但是,两个血红素中心的中点电位在治疗后并未显示出轻微的下降,这表明中点电位的变化并不是抑制的主要原因。目前的结果表明,玉米可能通过利用协同的H(+)/ e(-)转移机制进行抗坏血酸特异性跨膜电子转移,而血红素轴向His(86)的特定N-碳乙氧基化作用会抑制质子从结合的抗坏血酸的去除是抑制的主要原因。另一方面,Lys(83)对于从抗坏血酸快速接受电子的初始步骤可能很重要。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号