首页> 外文期刊>Journal of Bioinformatics and Computational Biology >COFACTOR MODIFICATION ANALYSIS: A COMPUTATIONAL FRAMEWORK TO IDENTIFY COFACTOR SPECIFICITY ENGINEERING TARGETS FOR STRAIN IMPROVEMENT
【24h】

COFACTOR MODIFICATION ANALYSIS: A COMPUTATIONAL FRAMEWORK TO IDENTIFY COFACTOR SPECIFICITY ENGINEERING TARGETS FOR STRAIN IMPROVEMENT

机译:系数修正分析:确定应变改进系数专用工程目标的计算框架

获取原文
获取原文并翻译 | 示例
           

摘要

Cofactors, such as NAD(H) and NADP(H), play important roles in energy transfer within the cells by providing the necessary redox carriers for a myriad of metabolic reactions, both anabolic and catabolic. Thus, it is crucial to establish the overall cellular redox balance for achieving the desired cellular physiology. Of several methods to manipulate the intracellular cofactor regeneration rates, altering the cofactor specificity of a particular enzyme is a promising one. However, the identification of relevant enzyme targets for such cofactor specificity engineering (CSE) is often very difficult and labor intensive. Therefore, it is necessary to develop more systematic approaches to find the cofactor engineering targets for strain improvement. Presented herein is a novel mathematical framework, cofactor modification analysis (CMA), developed based on the well-established constraints-based flux analysis, for the systematic identification of suitable CSE targets while exploring the global metabolic effects. The CMA algorithm was applied to E. coli using its genome-scale metabolic model, iJO1366, thereby identifying the growth-coupled cofactor engineering targets for overproducing four of its native products: acetate, formate, ethanol, and lactate, and three non-native products: 1-butanol, 1,4-butanediol, and 1,3-propanediol. Notably, among several target candidates for cofactor engineering, glyceraldehyde-3-phosphate dehydrogenase (GAPD) is the most promising enzyme; its cofactor modification enhanced both the desired product and biomass yields significantly. Finally, given the identified target, we further discussed potential mutational strategies for modifying cofactor specificity of GAPD in E. coli as suggested by in silico protein docking experiments.
机译:辅因子,例如NAD(H)和NADP(H),通过为各种代谢和分解代谢代谢反应提供必需的氧化还原载体,在细胞内的能量转移中发挥重要作用。因此,至关重要的是建立总体细胞氧化还原平衡以实现所需的细胞生理。在操纵细胞内辅因子再生速率的几种方法中,改变特定酶的辅因子特异性是一种有前途的方法。然而,对于这样的辅因子特异性工程(CSE),相关酶靶标的鉴定通常是非常困难且费力的。因此,有必要开发更系统的方法来找到用于改善菌株的辅因子工程目标。本文介绍的是一种新颖的数学框架,辅因子修饰分析(CMA),它是基于完善的基于约束的通量分析而开发的,用于在探索全球代谢效应的同时系统地识别合适的CSE目标。使用其基因组规模的代谢模型iJO1366将CMA算法应用于大肠杆菌,从而确定了生长耦合辅因子工程靶标,以过量生产其四种天然产物:乙酸盐,甲酸盐,乙醇和乳酸盐,以及三种非天然产物产品:1-丁醇,1,4-丁二醇和1,3-丙二醇。值得注意的是,在辅因子工程的几个目标候选物中,甘油三磷酸甘油醛脱氢酶(GAPD)是最有前途的酶。其辅因子修饰显着提高了所需产物和生物量的产量。最后,给定了已确定的靶标,我们进一步讨论了通过计算机蛋白对接实验所建议的修饰大肠杆菌中GAPD辅因子特异性的潜在突变策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号