...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases
【24h】

A density functional investigation of the extradiol cleavage mechanism in non-heme iron catechol dioxygenases

机译:密度泛函研究非血红素儿茶酚双加氧酶中二醇的裂解机理

获取原文
获取原文并翻译 | 示例

摘要

The mechanism for extradiol cleavage in non-heme iron catechol dioxygenase was modelled theoretically via density functional theory. Based on the Fe~(II)-His,His,Glu motif observed in enzymes, an active site model complex, [Fe(acetate)(imidazole)_2(catecholate)(O_2)]~-, was optimized for states with six, four and two unpaired electrons (U6, U4 and U2, respectively). The transfer of the terminal atom of the coordinated dioxygen leading to "ferryl" Fe=O intermediates spontaneously generates and extradiol epoxide. The computed barriers range from 19 kcal mol~(-1) on the U6 surface to ~25 kcal mol~(-1) on the U4 surface, with overall reaction energies of +11.6, 6.3 and 7.1 kcal mol~(-1) for U6, U4 and U2, respectively. The calculations for a protonated process reveal the terminal oxygen of O_2 to be the thermo-dynamically favoured site but subsequent oxygen transfer to the catechol has a barrier of ~30-40 kcal mol~(-1), depending on the spin state. Instead, protonating the acetate group gives a slightly higher energy species but a subsequent barrier on the U4 surface of only 7 kcal mol~(-1) relative to the hydroperoxide complex. The overall exoergicity increases to 13 kcal mol~(-1). The favoured proton-assisted pathway does not involve significant radical character and has features reminiscent of a Criegee rearrangement which involves the participation of the aromatic ring π-orbitals in the formation of the new carbonoxygen bond. The subsequent collapse of the epoxide, attack by the coordinated hydroxide and final product formation proceeds with an overall exoergicity of ~75 kcal mol~(-1) on the U4 surface.
机译:通过密度泛函理论从理论上模拟了非血红素邻苯二酚双加氧酶中二醇的裂解机理。基于酶中观察到的Fe〜(II)-His,His,Glu基序,针对具有六个状态的状态优化了活性位点模型复合物[Fe(乙酸)(咪唑)_2(儿茶酚)(O_2)]〜- ,四个和两个不成对的电子(分别为U6,U4和U2)。配位双氧的末端原子的转移导致自发地生成Fe 2 O中间体,并形成环己二醇环氧化合物。计算的势垒范围从U6表面的19 kcal mol〜(-1)到U4表面的〜25 kcal mol〜(-1),总反应能为+11.6、6.3和7.1 kcal mol〜(-1)。分别用于U6,U4和U2。质子化过程的计算表明,O_2的末端氧是热力学上有利的位点,但是根据自旋状态,随后转移到邻苯二酚的氧具有约30-40 kcal mol〜(-1)的势垒。相反,使乙酸酯基团质子化会产生稍高的能量,但随后在U4表面的势垒相对于氢过氧化物配合物仅为7 kcal mol〜(-1)。总放热增加到13 kcal mol〜(-1)。偏爱的质子辅助途径不涉及显着的自由基特征,并且具有让人联想起克里基重排的特征,该重排涉及芳环π-轨道参与新的碳氧键的形成。随后环氧化物的崩解,配位氢氧化物的侵蚀和最终产物的形成在U4表面上的总散热量约为75 kcal mol〜(-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号