...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity
【24h】

Nitric oxide generation from heme/copper assembly mediated nitrite reductase activity

机译:血红素/铜组装体产生的一氧化氮介导的亚硝酸还原酶活性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nitric oxide (NO) as a cellular signaling molecule and vasodilator regulates a range of physiological and pathological processes. Nitrite (NO_2~-) is recycled in vivo to generate nitric oxide, particularly in physiologic hypoxia and ischemia. The cytochrome c oxidase binuclear heme a_3/Cu_B active site is one entity known to be responsible for conversion of cellular nitrite to nitric oxide. We recently reported that a partially reduced heme/copper assembly reduces nitrite ion, producing nitric oxide; the heme serves as the reductant and the cupric ion provides a Lewis acid interaction with nitrite, facilitating nitrite (N–O) bond cleavage (Hematian et al., J. Am. Chem. Soc. 134:18912–18915, 2012). To further investigate this nitrite reductase chemistry, copper(II)–nitrito complexes with tridentate and tetradentate ligands were used in this study, where either O,O′-bidentate or O-unidentate modes of nitrite binding to the cupric center are present. To study the role of the reducing ability of the ferrous heme center, two different tetraarylporphyrinate– iron(II) complexes, one with electron-donating paramethoxy peripheral substituents and the other with electron- withdrawing 2,6-difluorophenyl substituents, were used. The results show that differing modes of nitrite coordination to the copper(II) ion lead to differing kinetic behavior. Here, also, the ferrous heme is in all cases the source of the reducing equivalent required to convert nitrite to nitric oxide, but the reduction ability of the heme center does not play a key role in the observed overall reaction rate. On the basis of our observations, reaction mechanisms are proposed and discussed in terms of heme/ copper heterobinuclear structures.
机译:一氧化氮(NO)作为细胞信号分子和血管扩张剂,调节一系列的生理和病理过程。亚硝酸盐(NO_2〜-)在体内被循环利用以生成一氧化氮,特别是在生理性缺氧和局部缺血中。细胞色素C氧化酶双核血红素a_3 / Cu_B活性位点是已知负责细胞亚硝酸盐转化为一氧化氮的一种实体。我们最近报道说,部分减少的血红素/铜组装减少了亚硝酸根离子,产生一氧化氮。血红素充当还原剂,铜离子提供与亚硝酸根的路易斯酸相互作用,促进亚硝酸根(N–O)键的裂解(Hematian等人,J。Am。Chem。Soc。134:18912–18915,2012)。为了进一步研究这种亚硝酸还原酶的化学性质,本研究中使用了具有三齿和四齿配体的铜(II)-亚硝酸盐络合物,其中亚硝酸盐与铜中心的结合呈O,O'-双齿或O-单齿模式。为了研究亚铁血红素中心还原能力的作用,使用了两种不同的四芳基卟啉-铁(II)配合物,一种带有给电子对位甲氧基外围取代基,另一种带有吸电子的2,6-二氟苯基取代基。结果表明,亚硝酸盐与铜(II)离子配位的不同模式会导致不同的动力学行为。同样,在所有情况下,亚铁血红素都是将亚硝酸盐转化为一氧化氮所需的还原当量的来源,但血红素中心的还原能力在观察到的总反应速率中并不起关键作用。根据我们的观察,提出了关于血红素/铜异双核结构的反应机理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号