首页> 外文期刊>Journal of atmospheric and solar-terrestrial physics >Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works
【24h】

Variational assimilation of meteorological observations in the lower atmosphere: a tutorial on how it works

机译:低层大气中气象观测值的变化同化:有关其工作原理的教程

获取原文
获取原文并翻译 | 示例
           

摘要

Data assimilation combines atmospheric measurements with knowledge of atmospheric behavior as codified in computer models, thus producing a "best" estimate of current conditions that is consistent with both information sources. The four major challenges in data assimilation are: (1) to generate an initial state for a computer forecast that has the same mass-wind balance as the assimilating model, (2) to deal with the common problem of highly non-uniform distribution of observations, (3) to exploit the value of proxy observations (of parameters that are not carried explicitly in the model), and (4) to determine the statistical error properties of observing systems and numerical model alike so as to give each information source the proper weight. Variational data assimilation is practiced at major meteorological centers around the world. It is based upon multivariate linear regression, dating back to Gauss, and variational calculus. At the heart of the method is the minimization of a cost function, which guarantees that the analyzed fields will closely resemble both the background field (a short forecast containing a priori information about the atmospheric state) and current observations. The size of the errors in the background and the observations (the latter, arising from measurement and non-representativeness) determine how close the analysis is to each basic source of information. Three-dimensional variational (3DVAR) assimilation provides a logical framework for incorporating the error information (in the form of variances and spatial covariances) and deals directly with the problem of proxy observations. 4DVAR assimilation is an extension of 3DVAR assimilation that includes the time dimension; it attempts to find an evolution of model states that most closely matches observations taken over a time interval measured in hours. Both 3DVAR and, especially, 4DVAR assimilation require very large computing resources. Researchers are trying to find more efficient numerical solutions to these problems. Variational assimilation is applicable in the upper atmosphere, but practical implementation demands accurate modeling of the physical processes that occur at high altitudes and multiple sources of observations.
机译:数据同化将大气测量值与大气行为知识相结合(在计算机模型中进行了编码),从而产生了与两种信息源一致的“最佳”当前状况估计。数据同化的四个主要挑战是:(1)为计算机预测生成一个初始状态,该初始状态具有与同化模型相同的质量风平衡;(2)处理高度不均匀分布的常见问题观测,(3)利用(模型中未明确承载的参数的)代理观测的价值,以及(4)确定观测系统和数值模型的统计误差性质,以便为每个信息源提供适当的体重。世界各地的主要气象中心都在进行变分数据同化。它基于可追溯至高斯的多元线性回归和变分演算。该方法的核心是成本函数的最小化,它保证了所分析的场将非常类似于背景场(包含有关大气状态的先验信息的简短预测)和当前观测值。背景和观测值中的误差大小(后者是由测量和非代表性引起的)决定了分析与每个基本信息源的接近程度。三维变异(3DVAR)同化为合并误差信息(以方差和空间协方差的形式)提供了逻辑框架,并直接处理了代理观测的问题。 4DVAR同化是3DVAR同化的扩展,其中包括时间维度。它试图找到最接近匹配以小时为单位的时间间隔内获得的观测值的模型状态的演变。 3DVAR和特别是4DVAR同化都需要非常大的计算资源。研究人员正试图找到解决这些问题的更有效的数值方法。变分同化适用于高层大气,但是实际实施需要对在高海拔和多种观测来源下发生的物理过程进行精确建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号