首页> 外文期刊>Journal of Algebra >Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form
【24h】

Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form

机译:两个线性变换,每个线性变换相对于彼此的本征为三对角线; TD-D规范形式和LB-UB规范形式

获取原文
获取原文并翻译 | 示例
           

摘要

Let K denote a field and let V denote a vector space over K with finite positive dimension. We consider an ordered pair of linear transformations A: V -> V and B: V -> V which satisfy both (i), (ii) below.(i) There exists a basis for V with respect to which the matrix representing A is irreducible tridiagonal and the matrix representing B is diagonal.(ii) There exists a basis for V with respect to which the matrix representing A is diagonal and the matrix representing B is irreducible tridiagonal.We call such a pair a Leonard pair on V. We introduce two canonical forms for Leonard pairs. We call these the TD-D canonical form and the LB-UB canonical form. In the TD-D canonical form the Leonard pair is represented by an irreducible tridiagonal matrix and a diagonal matrix, subject to a certain normalization. In the LB-UB canonical form the Leonard pair is represented by a lower bidiagonal matrix and an upper bidiagonal matrix, subject to a certain normalization. We describe the two canonical forms in detail. As an application we obtain the following results. Given square matrices A, B over K, with A tridiagonal and B diagonal, we display a necessary and sufficient condition for A B to represent a Leonard pair. Given square matrices A, B over K, with A lower bidiagonal and B upper bidiagonal, we display a necessary and sufficient condition for A, B to represent a Leonard pair, We briefly discuss how Leonard pairs correspond to the q-Racah polynomials and some related polynomials in the Askey scheme, We present some open problems, concerning Leonard pairs. (c) 2005 Elsevier Inc. All rights reserved.
机译:令K表示一个场,令V表示K上具有有限正维的向量空间。我们考虑满足以下两个(i),(ii)的一对有序线性变换A:V-> V和B:V-> V.(i)对于V而言存在一个基础,代表A的矩阵(ii)代表V的基础是,代表A的矩阵是对角线而代表B的矩阵是不可约三对角线。在V上我们称这对为伦纳德对。我们介绍伦纳德对的两种规范形式。我们称它们为TD-D规范形式和LB-UB规范形式。在TD-D规范形式中,伦纳德对由不可归约的三对角矩阵和对角矩阵表示,并经过一定的归一化处理。在LB-UB规范形式中,伦纳德对由较低的对角线矩阵和较高的对角线矩阵表示,并经过一定的归一化处理。我们将详细描述这两种规范形式。作为应用程序,我们获得以下结果。给定方差矩阵A,B相对于K的对角线,以及对角线A和对角线B,我们显示出A B表示伦纳德对的必要和充分条件。给定方阵A,B相对于K,A的对角线为A,B的对角线为B,而B的对角线为B,则对B,B表示伦纳德对,我们展示了充要条件。 Askey方案中的相关多项式,我们提出了一些有关Leonard对的未解决问题。 (c)2005 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号