首页> 外文期刊>Journal of Applied Geophysics >A method for improving the computational efficiency of a Laplace-Fourier domain waveform inversion based on depth estimation
【24h】

A method for improving the computational efficiency of a Laplace-Fourier domain waveform inversion based on depth estimation

机译:基于深度估计的提高拉普拉斯-傅立叶域波形反演计算效率的方法

获取原文
获取原文并翻译 | 示例
       

摘要

The Laplace-Fourier domain full waveform inversion can simultaneously restore both the long and intermediate short-wavelength information of velocity models because of its unique characteristics of complex frequencies. This approach solves the problem of conventional frequency-domain waveform inversion in which the inversion result is excessively dependent on the initial model due to the lack of low frequency information in seismic data. Nevertheless, the Laplace-Fourier domain waveform inversion requires substantial computational resources and long computation time because the inversion must be implemented on different combinations of multiple damping constants and multiple frequencies, namely, the complex frequencies, which are much more numerous than the Fourier frequencies. However, if the entire target model is computed on every complex frequency for the Laplace-Fourier domain inversion (as in the conventional frequency domain inversion), excessively redundant computation will occur. In the Laplace-Fourier domain waveform inversion, the maximum depth penetrated by the seismic wave decreases greatly due to the application of exponential damping to the seismic record, especially with use of a larger damping constant. Thus, the depth of the area effectively inverted on a complex frequency tends to be much less than the model depth. In this paper, we propose a method for quantitative estimation of the effective inversion depth in the Laplace-Fourier domain inversion based on the principle of seismic wave propagation and mathematical analysis. According to the estimated effective inversion depth, we can invert and update only the model area above the effective depth for every complex frequency without loss of accuracy in the final inversion result Thus, redundant computation is eliminated, and the efficiency of the Laplace-Fourier domain waveform inversion can be improved. The proposed method was tested in numerical experiments. The experimental results show that the Laplace-Fourier domain waveform inversion with variable depth can effectively reduce the calculation time to less than 50% without loss of quality in the inversion results. (C) 2015 Elsevier B.V. All rights reserved.
机译:Laplace-Fourier域全波形反演可以同时恢复速度模型的长波和中波短波信息,因为它具有复杂的频率特性。该方法解决了常规频域波形反演的问题,其中由于地震数据中缺乏低频信息,反演结果过度依赖于初始模型。然而,拉普拉斯-傅立叶域波形反演需要大量的计算资源和较长的计算时间,因为反演必须在多个阻尼常数和多个频率(即复数频率)的不同组合上实现,而复数频率要比傅立叶频率大得多。但是,如果在Laplace-Fourier域反演的每个复数频率上计算整个目标模型(如在常规频域反演中一样),则会发生过多的冗余计算。在Laplace-Fourier域波形反演中,由于对地震记录应用了指数阻尼,尤其是使用较大的阻尼常数时,地震波穿透的最大深度大大减小。因此,在复频率上有效反转的区域深度往往比模型深度小得多。本文提出了一种基于地震波传播原理和数学分析的定量估计拉普拉斯-傅里叶域反演有效反演深度的方法。根据估计的有效反演深度,我们可以对每个复杂频率仅对有效深度以上的模型区域进行反演和更新,而不会损失最终反演结果的准确性。因此,消除了多余的计算,并消除了Laplace-Fourier域的效率波形反转可以改善。在数值实验中对提出的方法进行了测试。实验结果表明,变深度的拉普拉斯-傅立叶域波形反演可以有效地将计算时间减少到50%以内,而不会降低反演结果的质量。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号