首页> 外文期刊>Journal of Applied Polymer Science >Mathematical modeling of rheological properties of hydroxyl-terminated polybutadiene binder and dioctyl adipate plasticizer
【24h】

Mathematical modeling of rheological properties of hydroxyl-terminated polybutadiene binder and dioctyl adipate plasticizer

机译:羟基封端的聚丁二烯粘合剂和己二酸二辛酯增塑剂流变性质的数学模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Solid composite propellants contain 80-90% of a crystalline oxidizer like ammonium perchlorate and powdery metallic fuel like aluminum with 10 to 15% organic binders like HTPB or CTPB, to bind the solids together and maintain the shape under severe stress and strain environment. Also, the propellant must not crack or become brittle at subzero temperatures. Formulating and processing of the highly filled composite propellants are difficult tasks and need a thorough understanding of rheology, even apart from a knowledge of propellant chemistry, particulate technology, manufacturing methods, and safe handling of explosives and hazardous materials. The flow behavior or rheology of the propellant slurry determines the ingredients and some of the abnormalities of the motor during firing. The propellant viscosity and mechanical properties are determined by the binder system, and the unloading viscosity of the propellant slurry is dependent on the initial viscosity of the binder system, solid loading, particle size, and its distribution, shape, temperature, and pressure. In the present report an attempt is made to study the dependency of viscosity of the HTPB binder system on temperature, plasticizer level (composition), and torque (angular velocity of spindle). The viscosity measurements were made using a Brookfield viscometer model DV III at different plasticizer levels (10-50%), temperatures (30-65degreesC), and torques (50-100%). The data indicate that the viscosity of HTPB, DOA, and their mixture decreases with increasing temperature and is constant with torque. The Arrhenius equation gives the energy for viscous flow to be 35 kcal/mol for HTPB. The variation of viscosity with temperature of HTPB/DOA and their mixture follows a mathematical model expressed as eta(th) = a(1)T(4) + a(2)T(3) + a(3)T(2) + a(4)T + a(5), where T is the temperature and a(1), a(2), a(3), a(4), and a(5) are the constants. (C) 2002 Wiley Periodicals, Inc. J Appl Polyrn Sci 85: 1002-1007, 2002. [References: 5]
机译:固体复合推进剂包含80-90%的结晶氧化剂(如高氯酸铵)和粉末状金属燃料(如铝)以及10%至15%的有机粘合剂(如HTPB或CTPB),以将固体粘结在一起,并在严重的应力和应变环境下保持形状。同样,推进剂在零度以下的温度下也不得开裂或变脆。高填充复合推进剂的配制和加工是一项艰巨的任务,并且需要对流变学有透彻的了解,即使不具备推进剂化学知识,颗粒技术,制造方法以及对炸药和有害物质的安全处理。推进剂浆液的流动行为或流变性决定了燃烧过程中电动机的成分和某些异常情况。推进剂的粘度和机械性能由粘合剂体系决定,推进剂浆液的卸荷粘度取决于粘合剂体系的初始粘度,固体载量,粒度及其分布,形状,温度和压力。在本报告中,试图研究HTPB粘合剂体系的粘度对温度,增塑剂含量(组成)和扭矩(锭子角速度)的依赖性。使用Brookfield粘度计DV III型在不同的增塑剂含量(10-50%),温度(30-65℃)和扭矩(50-100%)下进行粘度测量。数据表明,HTPB,DOA及其混合物的粘度随温度升高而降低,并随扭矩恒定。 Arrhenius方程给出的HTPB的粘性流能量为35 kcal / mol。 HTPB / DOA及其混合物的粘度随温度的变化遵循数学模型,表示为eta(th)= a(1)T(4)+ a(2)T(3)+ a(3)T(2) + a(4)T + a(5),其中T是温度,而a(1),a(2),a(3),a(4)和a(5)是常数。 (C)2002 Wiley Periodicals,Inc. J Appl Polyrn Sci 85:1002-1007,2002。[参考:5]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号