...
首页> 外文期刊>Journal of Applied Crystallography >High-performance powder diffraction pattern simulation for large-scale atomistic models via full-precision pair distribution function computation
【24h】

High-performance powder diffraction pattern simulation for large-scale atomistic models via full-precision pair distribution function computation

机译:通过高精度对分布函数计算的大型原子模型的高性能粉末衍射图模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A new full-precision algorithm to solve the Debye scattering equation has been developed for high-performance computing of powder diffraction line profiles from large-scale atomistic models of nanomaterials. The Debye function was evaluated using a pair distribution function computed with high accuracy, exploiting the series expansion of the error between calculated and equispace-sampled pair distances of atoms. The intensity uncertainty (standard deviation) of the computed diffraction profile was estimated as a function of the algorithm-intrinsic approximations and coordinate precision of the atomic positions, confirming the high accuracy of the simulated pattern. Based on the propagation of uncertainty, the new algorithm provides a more accurate powder diffraction profile than a brute-force calculation. Indeed, the precision of floating-point numbers employed in brute-force computations is worse than the estimated accuracy provided by the new algorithm. A software application, ROSE-X, has been implemented for parallel computing on CPU/GPU multi-core processors and distributed clusters. The computing performance is directly proportional to the total processor speed of the devices. An average speed of similar to 30 x 10(9) computed pair distances per second was measured, allowing simulation of the powder diffraction pattern of an similar to 23 million atom microstructure in a couple of hours. Moreover, the pair distribution function was recorded and reused to evaluate powder diffraction profiles of the same system with different properties (i.e. Q rather than 2 theta range, step and wavelength), avoiding additional pair distance computations. This approach was used to investigate a large collection of monoatomic and polyatomic microstructures, isolating the contribution from atoms belonging to different moieties (e.g. different species or crystalline domains).
机译:已经开发出一种解决德拜散射方程的新型全精度算法,用于从大型纳米材料原子模型中高效计算粉末衍射线轮廓。 Debye函数是使用高精度计算的对分布函数评估的,它利用了原子的计算出的和等空间采样的对距之间的误差的级数展开。估算出的衍射轮廓的强度不确定度(标准偏差)是算法固有近似值和原子位置坐标精度的函数,从而确认了模拟图案的高精度。基于不确定性的传播,新算法比蛮力计算提供了更准确的粉末衍射轮廓。确实,蛮力计算中使用的浮点数的精度比新算法提供的估计精度差。已实现软件应用程序ROSE-X,用于在CPU / GPU多核处理器和分布式集群上进行并行计算。计算性能与设备的总处理器速度成正比。测量的平均速度类似于每秒计算的30 x 10(9)的配对距离,可以在几个小时内模拟类似于2300万个原子微结构的粉末衍射图。此外,记录了成对分布函数并重新用于评估具有不同特性(即Q而不是2θ范围,步长和波长)的同一系统的粉末衍射图,从而避免了额外的成对距离计算。该方法用于研究大量的单原子和多原子微结构,从属于不同部分(例如,不同物种或晶体域)的原子中分离出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号