...
首页> 外文期刊>Journal of Aerosol Science >MADMS: Modal Aerosol Dynamics model for multiple Modes and fractal Shapes in the free-molecular and near-continuum regimes
【24h】

MADMS: Modal Aerosol Dynamics model for multiple Modes and fractal Shapes in the free-molecular and near-continuum regimes

机译:MADMS:模态气溶胶动力学模型,用于自由分子和近连续谱中的多种模式和分形

获取原文
获取原文并翻译 | 示例

摘要

Atmospheric particles vary in size and shape. Moment Dynamics Equations (MDEs) of the Modal Aerosol Dynamics (MAD) approach were extended to simulate the Brownian coagulation process of multimodal aerosols covering full size ranges and arbitrary fractal dimensions for implementation in three-dimensional atmospheric aerosol chemical transport and climate models. The proposed approach is referred as the Modal Aerosol Dyanmics 'model' for multiple Modes and fractal Shapes (MADMS). The approximation of Otto, Fissan, Park, and Lee (1997) for intramodal coagulation in the free-molecular regime was for the first time extended to intermodal coagulation with different geometric standard deviations (σ) and geometric mean diameters (D_g) for arbitrary mass fractal dimensions (D_f). To evaluate the accuracy of the MADMS model and to examine temporal evolution of coagulating aerosol modes under atmospheric conditions, simple one-box simulations using the model were performed and compared with rigorous numerical solutions obtained using the difference (bin) method. Deviations of MADMS from the accurate bin method (BIN100, d logD=3.01 x 10~(-2),100 bins between 1 nm and 1 μm and 100 between 1 μm and 1 mm) are smaller than 5% in number and volume concentrations and smaller than 2% in σ and D_g during the period for 30% of the initial number concentration to coagulate (t_(30)). The MADMS model is four to six orders of magnitude faster than BIN100 with respect to CPU time. It was found to be sometimes comparable in accuracy to, but generally one order of magnitude more accurate than, the bin method with a coarse bin-grid resolution (BIN10, d logD=3.01 x 10~(-1), 10 bins between 1 nm and 1 μm), which is commonly used for 3-D simulations, as well as two to four orders of magnitude faster than BIN10.
机译:大气颗粒的大小和形状各不相同。扩展了模态气溶胶动力学(MAD)方法的矩动力学方程(MDE),以模拟涵盖全尺寸范围和任意分形维数的多峰气溶胶的布朗尼凝聚过程,以在三维大气气溶胶化学迁移和气候模型中实施。所提出的方法被称为用于多种模式和分形形状(MADMS)的模态气溶胶动力学模型。 Otto,Fissan,Park和Lee(1997)在自由分子状态下进行模态内凝结的近似值首次扩展为具有不同几何标准偏差(σ)和任意质量的几何平均直径(D_g)的联运凝结。分形维数(D_f)。为了评估MADMS模型的准确性并检查大气条件下凝结气溶胶模式的时间演变,使用该模型进行了简单的一箱模拟,并将其与使用差分(箱)方法获得的严格数值解进行了比较。 MADMS与精确bin方法的偏差(BIN100,d logD = 3.01 x 10〜(-2),1 nm和1μm之间的100个bin和1μm和1 mm之间的100个bin)的数量和体积浓度小于5%并且在初始数量浓度的30%凝结期间,σ和D_g小于2%(t_(30))。就CPU时间而言,MADMS模型比BIN100快4到6个数量级。人们发现它有时在精度上可以与具有粗糙bin-grid分辨率(BIN10,d logD = 3.01 x 10〜(-1),在1之间的10个bin的bin方法)相比,但其精度通常要高一个数量级。 nm和1μm),通常用于3-D仿真,并且比BIN10快2至4个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号