首页> 外文期刊>Journal of Aerosol Science >Design and performance test of a multi-channel diffusion charger for real-time measurements of submicron aerosol particles having a unimodal log-normal size distribution
【24h】

Design and performance test of a multi-channel diffusion charger for real-time measurements of submicron aerosol particles having a unimodal log-normal size distribution

机译:多通道扩散充电器的设计和性能测试,用于实时测量具有单峰对数正态尺寸分布的亚微米气溶胶颗粒

获取原文
获取原文并翻译 | 示例
           

摘要

It is important to develop a simple and fast method for measuring the sizes of submicron particles in both laboratories and fields. In our previous studies, Park, An, and Hwang [(2007). Development and performance test of a unipolar diffusion charger for real-time measurements of submicron aerosol particles having a log-normal size distribution. Journal of Aerosol Science, 38, 420-430] and Park, Kim, An, and Hwang [(2007). Real-time measurement of submicron aerosol particles having a log-normal size distribution by simultaneously using unipolar diffusion charger and unipolar field charger. Journal of Aerosol Science, 38,1240-245], we introduced methodologies that our lab made unipolar charger could lead to detection times of under 5 s in conjunction with an electrometer and a condensation particle counter (CPC), and under 3 s with two electrometers. However, both methodologies require an appropriate assumption of the geometric standard deviation of particle sizes. In this paper, we introduce a methodology for determining the geometric standard deviation of particle sizes as well as the geometric mean diameter and the total number concentration of particles. For this purpose, a diffusion charger that consisted of discharge zone, mixing and charging zone, and three flow channels for obtaining three different residence times and average charges of particles in the channels, was designed and tested. For determining the average particle charge, various methods including theoretical calculations and the tandem differential mobility analyzer (TDMA) method were used. The results obtained from the different methods agreed well with each other. To compare the size distribution with the data that were measured through a scanning mobility particle sizer (SMPS), sodium chloride (NaCl) particles were used. The estimated results by using a data inversion algorithm were less than those measured by SMPS by around 22% for the total number concentration and 10% for both the geometric mean diameter and the geometric standard deviation. Furthermore, the detection time was under 3 s.
机译:开发一种简单而快速的方法来测量实验室和现场中亚微米颗粒的大小非常重要。在我们以前的研究中,Park,An和Hwang [(2007)。用于实时测量具有对数正态尺寸分布的亚微米气溶胶颗粒的单极扩散充电器的开发和性能测试。气溶胶科学学报,38,420-430]和Park,Kim,An和Hwang [(2007)。通过同时使用单极扩散充电器和单极场充电器实时测量具有对数正态尺寸分布的亚微米气溶胶颗粒。 Journal of Aerosol Science,38,1240-245]中,我们介绍了我们的实验室制造的单极充电器与静电计和凝结粒子计数器(CPC)结合使用可导致5 s以下的检测时间,而在2 s于3s的情况下可导致3 s的检测方法。静电计。但是,两种方法都需要对粒径的几何标准偏差进行适当假设。在本文中,我们介绍了一种确定粒径的几何标准偏差以及几何平均直径和颗粒总数浓度的方法。为了这个目的,设计并测试了由放电区,混合区和充电区以及三个流动通道组成的扩散充电器,以获得三个不同的停留时间和通道中颗粒的平均电荷。为了确定平均粒子电荷,使用了各种方法,包括理论计算和串联微分迁移率分析仪(TDMA)方法。从不同方法获得的结果相互吻合。为了将尺寸分布与通过扫描迁移率粒度仪(SMPS)测量的数据进行比较,使用了氯化钠(NaCl)颗粒。使用数据反演算法得出的估计结果比SMPS测量的结果少了22%(总数浓度)和10%(几何平均直径和几何标准偏差)。此外,检测时间在3秒以内。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号