首页> 外文期刊>Journal of Aerosol Science >Numerical and experimental deposition of fine respiratory aerosols:Development of a two-phase drift flux model with near-wall velocity corrections
【24h】

Numerical and experimental deposition of fine respiratory aerosols:Development of a two-phase drift flux model with near-wall velocity corrections

机译:精细呼吸气溶胶的数值和实验沉积:具有近壁速度校正的两相漂移通量模型的建立

获取原文
获取原文并翻译 | 示例
           

摘要

Simulations of fine aerosols(100nm<=dp<=1 mu m)in the respiratory tract are challenging due to low particle deposition rates and the combined effects of diffusional and inertial deposition mechanisms.Furthermore,validations of fine respiratory aerosol deposition are difficult due to a lack of localized experimental data.The objective of this study is to develop and test a continuous two-phase model for simulating the regional and local deposition of dilute fine aerosols in an idealized double bifurcation segment of the respiratory tract.To evaluate the developed transport model,novel in vitro deposition results for 400 nm particles have been determined in a double bifurcation geometry of respiratory generations G3-G5.In addition,previously reported local deposition characteristics for 1 mu m aerosols have also been considered.Computational two-phase models that have been evaluated include a standard chemical species(CS)mass fraction approximation,the drift flux(DF)approach to account for finite particle inertia,and two novel extensions of the DF model to correct for near-wall particle velocity.The first velocity correction model(DF-VC1)applies a continuous field solution for particle slip at the wall surface.As an alternative,a sub-grid near-wall Lagrangian solution has been proposed as the DF-VC2 model.Localized experimental results for the deposition of 400 nm particles indicated elevated deposition contours ranging from 1% to 5% of total deposition at the first bifurcation and 0.1-1% at the second.Of the computational models tested,the DF-VC2 method provided the best match to experimental deposition values on a regional and highly localized basis.Specifically,the DF-VC2 model matched total experimental deposition results to within 10% for both 400 nm and 1 mu m particles.Considering the local deposition of fine aerosols,the DF-VC2 model matched the experimentally determined elevated contours at the first and second bifurcations for both 400 nm and 1 mu m particles.In conclusion,a DF particle transport model with near-wall velocity corrections appears to provide a highly effective solution for the deposition of fine respiratory aerosols.
机译:由于低的颗粒沉积速率以及扩散和惯性沉积机制的共同作用,在呼吸道中模拟细小气溶胶(100nm <= dp <= 1μm)具有挑战性。此外,由于细小气溶胶沉积的验证较困难,缺乏局部实验数据。本研究的目的是开发和测试连续的两阶段模型,以模拟稀薄的气溶胶在理想的呼吸道双分叉部分的区域和局部沉积。模型,在呼吸世代G3-G5的双分叉几何中,确定了400 nm颗粒的新的体外沉积结果。此外,还考虑了先前报道的1μm气溶胶的局部沉积特征。已评估包括标准化学物质(CS)的质量分数近似,漂移通量(DF)方法以解决f或有限粒子惯性,以及DF模型的两个新颖扩展以校正近壁粒子速度。第一个速度校正模型(DF-VC1)对壁表面的粒子滑动应用连续场解。提出了亚网格近壁拉格朗日解作为DF-VC2模型。400nm颗粒沉积的局部实验结果表明,在第一个分叉处沉积轮廓的升高范围为总沉积的1%至5%,0.1-1在测试的计算模型中,DF-VC2方法在区域和高度局部的基础上提供了与实验沉积值的最佳匹配。具体而言,DF-VC2模型将两者的总实验沉积结果均匹配在10%以内400纳米和1微米颗粒。考虑到细小气溶胶的局部沉积,DF-VC2模型与实验确定的400纳米和1微米颗粒在第一和第二分叉处的升高轮廓相匹配s。总之,具有近壁速度校正的DF粒子传输模型似乎为精细的呼吸气溶胶的沉积提供了高效的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号