首页> 外文期刊>Journal of Aerosol Science >Cut size minimization and cloud element break-up in a ground-based CVI
【24h】

Cut size minimization and cloud element break-up in a ground-based CVI

机译:地面CVI中的切割尺寸最小化和云元素分解

获取原文
获取原文并翻译 | 示例
           

摘要

A ground-based Counterflow Virtual Impactor (CVI) was optimized to achieve nearly complete in situ segregation of cloud droplets and ice crystals (with subsequent evaporation, releasing dissolved gaseous and non-volatile material) from their surrounding carrier gas and intersitial aerosol particles. With a one-dimensional numerical model, the CVI cut size D_50 was reduced to 4 #mu#m from 7 #mu#m in an earlier design (Anderson et al., 1993). This could be achieved by a velocity increase ot 225 m s~(-1) inside the wind tunnel forming part of the ground-based CVI, and by minimizing all dimensions contributing to the stagnation length L_stag (distance from the wind intersection plane tunnel/CVI to the stagnation plane inside the CVI that cloud elements have to reach to be sampled). CVI and high-speed wind tunnel were designed and constructed according to the modeling results. Subsequent calibrations verified the calculated lower cut sizes D_50 and quantified the slope of the collection efficiency curve in terms of cut sharpness S_cut. With the new CVI lower cut sizes between 4 and 6 #mu#m can be achieved. A cloud chamber experiment was performed with CVI measurements supplemented by a Forward Scattering SDpectrometer Probe (FSSP). It could be demonstrated that significant drop break-up is caused by wind tunnel velocities well beyond 150 m s~(-1). For a reduced wind tunnel velocity of 150 m s~(-1) a reasonable cut size of at least 5 #mu#m could be maintained, while avoiding break-up. The demonstration of break-up should have consequences for any cloud sampling technique featureing high relative velocities of cloudy air past the inlet. In particular, in-cloud retrieval of cloud nuclei concentrations on high-speed airborne platforms could be affected to a signficant extent.
机译:对基于地面的逆流虚拟撞击器(CVI)进行了优化,以实现将云滴和冰晶从其周围的载气和间隙气溶胶颗粒中完全分离出来(随后蒸发,释放出气态和非挥发性物质)。使用一维数值模型,在较早的设计中,CVI切割尺寸D_50从7#mu#m减小到4#mu#m(Anderson等,1993)。这可以通过在风洞内部形成地面CVI的速度增加ot 225 ms〜(-1)并最小化有助于停滞长度L_stag(与风交叉平面隧道/ CVI的距离)的所有尺寸来实现到CVI内部的停滞平面,必须采样云元素)。根据建模结果设计和建造了CVI和高速风洞。随后的校准验证了计算出的下部切割尺寸D_50,并根据切割清晰度S_cut量化了收集效率曲线的斜率。使用新的CVI,可以实现4至6#mu#m的较低切割尺寸。使用CVI测量和前向散射SD光谱仪探头(FSSP)进行了云室实验。可以证明,远大于150 m s〜(-1)的风洞速度会导致明显的液滴破裂。对于降低的150 m s〜(-1)的风洞速度,可以保持至少5#μ#m的合理切割尺寸,同时避免破裂。破裂的证明应对任何经过进气口的多云空气相对速度较高的云采样技术产生影响。特别是,在高速机载平台上进行云核浓度的云内检索可能会受到很大影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号