首页> 外文期刊>Journal de Physique, IV: Proceedings of International Conference >Mode-locking and dynamic melting of vortex matter driven through mesoscopic channels
【24h】

Mode-locking and dynamic melting of vortex matter driven through mesoscopic channels

机译:通过介观通道驱动的涡旋物质的锁模和动态熔化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We investigated the dynamics of vortex matter confined to mesoscopic channels by means of mode locking experiments. When vortices move coherently through the pinning (shear) potential provided by static vortices in the channel edges, interference between the washboard frequency of the lattice and the frequency of superimposed rf-currents causes (Shapiro-like) steps in the dc-IV curves. These steps allow to trace directly how the number of moving rows in each channel and the frustration between row spacing and channel width, varies with magnetic field. The flow stress (~I_c) surprisingly exhibits maxima for mismatching (defective) structures, originating from traffic-jam-like flow due to disorder in the edges. We then focus on the behavior for higher fields, approaching the 2D melting field B_m. In this regime the presence of the interference phenomenon, characteristic for crystalline motion, strongly depends on the velocity (applied frequency) at which vortices are probed. The minimum velocity to observe coherent, solid-like motion is found to diverge when the field is increased towards B_m, above which the interference is absent for any frequency. This provides the first direct evidence for a velocity dependent, dynamic phase transition of vortex matter moving through disorder, as predicted by Koshelev and Vinokur.
机译:我们通过锁模实验研究了限于介观通道的涡旋物质的动力学。当涡流通过通道边缘中的静态涡流提供的钉扎(剪切)电势连贯地移动时,晶格的搓板频率和叠加的rf电流频率之间的干扰会导致dc-IV曲线出现(类似于Shapiro)阶跃。这些步骤允许直接跟踪每个通道中移动的行数以及行间距和通道宽度之间的受阻如何随磁场变化。流动应力(〜I_c)令人惊讶地表现出结构失配(缺陷)的最大值,该结构是由于边缘无序而引起的类似于交通堵塞的流动。然后,我们将重点放在较高场的行为上,接近2D熔化场B_m。在这种情况下,晶体运动特征的干扰现象的存在在很大程度上取决于探测涡旋的速度(施加的频率)。当磁场朝B_m方向增加时,观察到相干的类固体运动的最小速度会发散,在该速度以上,对于任何频率都没有干扰。正如Koshelev和Vinokur所预言的那样,这提供了涡旋物质通过速度的依赖于速度的动态相变的第一个直接证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号