首页> 外文期刊>Digital Signal Processing >An introduction to distribution theory for signals analysis. Part II. The convolution
【24h】

An introduction to distribution theory for signals analysis. Part II. The convolution

机译:信号分析的分布理论简介。第二部分卷积

获取原文
获取原文并翻译 | 示例
           

摘要

This article continues the exposition in Part I [D.C. Smith, An introduction to distribution theory for signals analysis, Digital Signal Process. 13 (2003) 201-232] of certain key concepts from distribution theory which are essential for understanding signal theory. In this second part, we demonstrate the power of distribution theory by focusing on distributional convolution and some of its applications to signals analysis. The well-known classical convolution theorem (CCT) states that the Fourier transform of a convolution of integrable functions is the product of their Fourier transforms, and is essential in signals processing, by providing a method for removing noise and undesirable spectral artifacts from signals. Unfortunately, signal processing texts routinely apply this theorem nonrigorously, with questionable results, e.g., in attempts to apply it to singular functions in derivations of the Hilbert conjugate and the analytic signal, in attempts to recover an unknown causal impulse response modeling a data channel, and in derivations of the Sampling Theorem [D.C. Smith, An introduction to distribution theory for signals analysis, Digital Signal Process. 13 (2003) 201-232]. Fortunately, many inadequacies of the CCT are overcome by its generalizations to the tempered distributions. In this article we discuss three distributional convolution theorems (DCTs), each of which has important theoretical and practical consequences for signal theory. We demonstrate that when the Cauchy principal value distribution is used to properly define the Hilbert conjugate, the first DCT may be applied to rigorously derive the analytic signal. The second DCT is particularly useful for applications involving compactly supported distributions, including the Dirac delta. The third DCT concerns the lesser-known distributional Laplace transform, which is shown by example to be superior to either the classical or distributional Fourier transform for recovering an unknown impulse response modeling a causal linear time-invariant system. This article upholds the style of Part I, by avoiding unnecessary abstraction and supplying very detailed proofs in hopes of appealing to a wider audience. Published by Elsevier Inc.
机译:本文延续了第一部分的论述。 Smith,《信号分析的分布理论简介》,《数字信号处理》。 13(2003)201-232]中的某些关键概念,对于理解信号理论必不可少。在第二部分中,我们通过关注分布卷积及其在信号分析中的一些应用来展示分布理论的力量。众所周知的经典卷积定理(CCT)指出,可积函数卷积的傅立叶变换是其傅立叶变换的产物,并且通过提供一种从信号中去除噪声和不希望有的频谱伪影的方法,在信号处理中必不可少。不幸的是,信号处理文本通常不严格地应用该定理,其结果令人怀疑,例如,试图将其应用于希尔伯特共轭和解析信号的奇异函数,试图恢复对数据通道建模的未知因果冲激响应,以及采样定理[DC Smith,《信号分析的分布理论简介》,《数字信号处理》。 13(2003)201-232]。幸运的是,CCT的许多不足之处都可以通过归纳为缓和分布来克服。在本文中,我们讨论了三个分布卷积定理(DCT),每个定理对信号理论都有重要的理论和实践意义。我们证明,当使用柯西主值分布正确定义希尔伯特共轭时,可以使用第一个DCT来严格推导分析信号。第二个DCT对于涉及紧凑支持的发行版(包括Dirac delta)的应用特别有用。第三DCT涉及鲜为人知的分布拉普拉斯变换,该拉普拉斯变换示例性地显示出优于经典或分布傅立叶变换,以恢复对因果线性时不变系统建模的未知脉冲响应。本文通过避免不必要的抽象并提供了非常详细的证明以希望吸引更多的读者,从而保持了第一部分的风格。由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号