...
首页> 外文期刊>DNA repair >Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase.
【24h】

Transcription of DNA containing the 5-guanidino-4-nitroimidazole lesion by human RNA polymerase II and bacteriophage T7 RNA polymerase.

机译:通过人类RNA聚合酶II和噬菌体T7 RNA聚合酶转录包含5-胍基-4-硝基咪唑病变的DNA。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Damage in transcribed DNA presents a challenge to the cell because it can partially or completely block the progression of an RNA polymerase, interfering with transcription and compromising gene expression. While blockage of RNA polymerase progression is thought to trigger the recruitment of transcription-coupled DNA repair (TCR), bypass of the lesion can also occur, either error-prone or error-free. Error-prone transcription is often referred to as transcriptional mutagenesis (TM). Elucidating why some lesions pose blocks to transcription elongation while others do not remains a challenging problem. As part of an effort to understand this, we studied transcription past a 5-guanidino-4-nitroimidazole (NI) lesion, using two structurally different RNA polymerases, human RNA polymerase II (hRNAPII) and bacteriophage T7 RNA polymerase (T7RNAP). The NI damage results from the oxidation of guanine in DNA by peroxynitrite, a well known, biologically important oxidant. It is of structural interest because it is a ring-opened and conformationally flexible guanine lesion. Our results show that NI acts as a partial block to T7RNAP while posing a major block to hRNAPII, which has a more constrained active site than T7RNAP. Lesion bypass by T7RNAP induces base misincorporations and deletions opposite the lesion (CA-1 deletion GU), but hRNAPII exhibits error-free transcription although lesion bypass is a rare event. We employed molecular modeling methods to explain the observed blockage or bypass accompanied by nucleotide incorporation opposite the lesion. The results of the modeling studies indicate that NI's multiple hydrogen-bonding capabilities and torsional flexibility are important determinants of its effect on transcription in both enzymes. These influence the kinetics of lesion bypass and may well play a role in TM and TCR in cells.
机译:转录的DNA的损伤给细胞带来了挑战,因为它可以部分或完全阻止RNA聚合酶的进程,从而干扰转录并损害基因表达。尽管认为RNA聚合酶进程的阻滞会触发转录偶联DNA修复(TCR)的募集,但病变的旁路也可能发生,容易出错或没有错误。容易出错的转录通常称为转录诱变(TM)。阐明为什么某些病变会阻碍转录延伸,而另一些则不是一个具有挑战性的问题。为了理解这一点,我们使用两种结构不同的RNA聚合酶,即人类RNA聚合酶II(hRNAPII)和噬菌体T7 RNA聚合酶(T7RNAP),研究了5-胍基-4-硝基咪唑(NI)病变的转录。 NI损伤是由于过氧亚硝酸盐(一种众所周知的生物学上重要的氧化剂)将DNA中的鸟嘌呤氧化所致。由于它是开环的且构象柔性的鸟嘌呤损伤,因此具有结构上的意义。我们的结果表明,NI充当T7RNAP的部分阻滞,而对hRNAPII构成主要阻滞,而hRNAPII的活性位点比T7RNAP更受限制。 T7RNAP绕过病灶会诱导与病灶相反的碱基错误掺入和缺失(C> A> -1缺失> G > U),但hRNAPII表现出无错转录,尽管病灶旁路是一种罕见的事件。我们采用分子建模方法来解释观察到的阻塞或旁路,并伴有病变对面的核苷酸掺入。建模研究的结果表明,NI的多重氢键结合能力和扭转柔韧性是影响其对两种酶转录的重要决定因素。这些影响病变旁路的动力学,并可能在细胞中的TM和TCR中发挥作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号