首页> 外文期刊>Developmental dynamics: an official publication of the American Association of Anatomists >Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry.
【24h】

Localization and loss-of-function implicates ciliary proteins in early, cytoplasmic roles in left-right asymmetry.

机译:定位和功能丧失将纤毛蛋白牵涉到左右不对称的早期细胞质作用中。

获取原文
获取原文并翻译 | 示例
           

摘要

Left-right asymmetry is a crucial feature of the vertebrate body plan. While much molecular detail of this patterning pathway has been uncovered, the embryonic mechanisms of the initiation of asymmetry, and their evolutionary conservation among species, are still not understood. A popular recent model based on data from mouse embryos suggests extracellular movement of determinants by ciliary motion at the gastrulating node as the initial step. An alternative model, driven by findings in the frog and chick embryo, focuses instead on cytoplasmic roles of motor proteins. To begin to test the latter hypothesis, we analyzed the very early embryonic localization of ciliary targets implicated in mouse LR asymmetry. Immunohistochemistry was performed on frog and chick embryos using antibodies that have (KIF3B, Polaris, Polycystin-2, acetylated alpha-tubulin) or have not (LRD, INV, detyrosinated alpha-tubulin) been shown to detect in frog embryos only the target that they detect in mammalian tissue. Immunohistochemistry revealed localization signals for all targets in the cytoplasm of cleavage-stage Xenopus embryos, and in the base of the primitive streak in chick embryos at streak initiation. Importantly, several left-right asymmetries were detected in both species, and the localization signals were dependent on microtubule and actin cytoskeletal organization. Moreover, loss-of-function experiments implicated very early intracellular microtubule-dependent motor protein function as an obligate aspect of oriented LR asymmetry in Xenopus embryos. These data are consistent with cytoplasmic roles for motor proteins in patterning the left-right axis that do not involve ciliary motion.
机译:左右不对称是脊椎动物身体计划的关键特征。虽然尚未发现该构图途径的许多分子细节,但仍不了解引发不对称性的胚胎机制及其在物种间的进化保守性。最近流行的一种基于小鼠胚胎数据的模型表明,通过胃结节处的纤毛运动决定簇的细胞外运动是第一步。由青蛙和雏鸡胚胎中的发现驱动的另一种模型则侧重于运动蛋白的细胞质作用。为了测试后一种假设,我们分析了与小鼠LR不对称有关的睫状靶标的非常早期的胚胎定位。免疫组化实验是使用已显示(KIF3B,Polaris,Polycystin-2,乙酰化α-微管蛋白)或未检测到(LRD,INV,脱酪氨酸α-微管蛋白)的抗体对蛙和鸡胚进行检测的,他们在哺乳动物组织中发现。免疫组织化学揭示了分裂期爪蟾胚胎细胞质中所有目标的定位信号,以及条纹开始时雏鸡胚胎原始条纹的底部的定位信号。重要的是,在两个物种中均检测到几个左右不对称性,并且定位信号取决于微管和肌动蛋白细胞骨架的组织。此外,功能丧失实验暗示非常早期的细胞内微管依赖性运动蛋白功能是非洲爪蟾胚胎中定向LR不对称的重要方面。这些数据与运动蛋白在构图不涉及睫状运动的左右轴上的细胞质作用一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号