首页> 外文期刊>Desalination: The International Journal on the Science and Technology of Desalting and Water Purification >Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis
【24h】

Nanofibers in thin-film composite membrane support layers: Enabling expanded application of forward and pressure retarded osmosis

机译:薄膜复合膜支撑层中的纳米纤维:可扩展应用正向渗透和压力延迟渗透

获取原文
获取原文并翻译 | 示例
           

摘要

Re-engineering the support layers of membranes for forward and pressure retarded osmosis is critical for making these technologies commercially viable. Real-world applications of forward and pressure retarded osmosis, especially those involving natural and waste waters, will require membranes to withstand significant stresses. Therefore, structural changes to the support layer, which are necessary in minimizing internal concentration polarization, must not compromise its critical abilities to resist mechanical stress and provide a suitable surface for the interfacial polymerization of a robust and selective active layer. Electrospinning can provide nanofibers for support layers to potentially overcome the limitations of traditional membrane fabrication techniques in fulfilling these challenging design criteria. In this work, we present the fabrication and evaluation of thin-film composite membranes composed of electrospun polyethylene terephrhalate nanofibers, a phase separation formed microporous polysulfone layer, and a polyamide selective layer formed by interfacial polymerization. These membranes have active and support layer transport properties that are suitable for engineered osmosis, with water permeability of 1.13 L m~(-2) h~(-1) bar~(-1) (3.14×10~(-7) m s~(-1) bar~(-1)), salt permeability of 0.23 Lm~(-2) h~(-1) (6.4×10~(-8) m s~(-1)), and a structural parameter of 651 urn. Relevant and easily reproducible tests for membrane resistance to mechanical stress were performed. The use of electrospun fibers in the support layer enhanced membrane resistance to delamination at high cross-flow velocities because the 340 nm diameter electrospun fibers enmesh with the microporous polysulfone layer. A broader discussion of the most promising approaches for using electrospun materials to improve membranes for engineered osmosis is provided.
机译:重新设计膜的支撑层以实现正向渗透和压力延迟渗透,对于使这些技术在商业上可行是至关重要的。正向和负压渗透的实际应用,尤其是涉及天然水和废水的渗透,将需要膜承受很大的压力。因此,在使内部浓度极化最小化中必需的对支撑层的结构改变,必须不损害其抵抗机械应力的关键能力,并为鲁棒性和选择性活性层的界面聚合提供合适的表面。电纺可以为支撑层提供纳米纤维,以潜在地克服传统膜制造技术在满足这些具有挑战性的设计标准时的局限性。在这项工作中,我们介绍了由电纺聚对苯二甲酸乙二酯纳米纤维,相分离形成的微孔聚砜层和通过界面聚合形成的聚酰胺选择层组成的薄膜复合膜的制备和评价。这些膜具有适合工程渗透的活性和支撑层传输特性,透水性为1.13 L m〜(-2)h〜(-1)bar〜(-1)(3.14×10〜(-7)ms 〜(-1)bar〜(-1)),0.23 Lm〜(-2)h〜(-1)(6.4×10〜(-8)ms〜(-1))的盐渗透率和结构参数651缸进行了有关膜对机械应力的抵抗力的相关试验,并易于再现。在支撑层中使用电纺纤维可提高膜在高横流速度下的抗分层性,因为直径340 nm的电纺纤维会与微孔聚砜层啮合。提供了有关使用电纺材料改善工程渗透膜的最有前途方法的更广泛讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号