...
首页> 外文期刊>Trees. Structure and Function >Transamidination of [1-14C]-guanidinoacetic acid to 14C-glycine and decarboxylation to 14CO2 in white spruce shoot primordia entering winter dormancy.
【24h】

Transamidination of [1-14C]-guanidinoacetic acid to 14C-glycine and decarboxylation to 14CO2 in white spruce shoot primordia entering winter dormancy.

机译:[1- 14 C]-胍基乙酸的氨基转移为 14 C-甘氨酸和脱羧为 14 CO 2 在白云杉芽原基进入冬季休眠。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Feeding [1-14C]-guanidinoacetic acid to shoot primordia, O2 uptake was inhibited and major products were 14C-glycine, 14CO2 and 14C-serine. The direct decarboxylation of [1-14C]-guanidinoacetic acid to 14CO2 and N-methylguanidine, the methylation of [1-14C]-guanidinoacetic acid to 14C-creatine, and the lytic cleavage to urea and 14C-glycine were all ruled out. Enzymatic transamidinations of [1-14C]-guanidinoacetic acid with amino acid acceptors occurred as arginine-rich storage proteins were being turned over and new proteins synthesized containing 14C-glycine and 14C-serine. The products of transamidination were recycled as substrates until 14C-glycine was metabolized in different directions and transported to mitochondria and peroxisomes. 14C-Glycine was decarboxylated by a glycine decarboxylase multienzyme complex resulting in a net carbon loss and a sharp decline in total protein rich in arginine N. Under these conditions, unlabelled arginine and ornithine contributed as substrates for reversible transamidination reactions. Peroxisomes and mitochondria are hypothesized as providing arginine-derived nitric oxide to maintain redox homeostasis in response to the stresses imposed by [1-14C]-guanidinoacetic acid and to protect against the inhibitory activity of sulfhydryls on transamidinase activity. The destruction of a respiratory inhibitor by transamidination may comprise a mechanism associated with the awakening from of dormancy and the mobilization of storage protein reserves in conifers.
机译:喂食[1- 14 C]-胍基乙酸来射击原基,O 2 的摄取受到抑制,主要产物为 14 C-甘氨酸,< sup> 14 CO 2 和 14 C-丝氨酸。 [1- 14 C]-胍基乙酸直接脱羧为 14 CO 2 和 N -甲基胍, [1- 14 C]-胍基乙酸的甲基化为 14 C-肌酸,并裂解为尿素和 14 C-甘氨酸被排除在外。随着富含精氨酸的贮藏蛋白的合成以及包含 14 C-甘氨酸的新蛋白的合成,[1- 14 C]-胍基乙酸与氨基酸受体发生了酶酰胺基转移反应和 14 C-丝氨酸。转酰胺基化的产物作为底物循环使用,直到 14 C-甘氨酸在不同方向上代谢并运输到线粒体和过氧化物酶体。 14 C-甘氨酸被甘氨酸脱羧酶多酶复合物脱羧,导致净碳损失和富含精氨酸N的总蛋白质急剧下降。在这些条件下,未标记的精氨酸和鸟氨酸是可逆的底物转酰胺化反应。假定过氧化物酶体和线粒体可提供精氨酸衍生的一氧化氮,以响应[1- 14 C]-胍基乙酸施加的应力来维持氧化还原稳态,并防止巯基对转氨酰胺酶的抑制活性活动。通过转酰胺基作用破坏呼吸抑制剂可能包括与休眠觉醒以及针叶树中存储蛋白储备的动员有关的机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号