...
【24h】

Particle Entropies and Entropy Quanta V.The P-t Uncertainty Relation

机译:粒子熵和熵量子V.P-t不确定关系

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We consider the temporal evolution of an isolated system of N particles from a nonequilibrium state of entropy S=S' to the equilibrium state of maximum entropy, S=S-max, S'<=S_max. The application of usual density matrix theory to the temporaldevelopment of S leads us to dS/dt=0: The entropy S does not change in time t. Thereby it is irrelevant, whether we consider a non-equilibrium state or an equilibrium state. Consequently, the system cannot irreversibly change by entropy production dS/dt>0 from S' to S_max. This is a paradoxial result, which contradicts the experience. It can be traced back to the von Neumann equation, which in principle describes reversible processes and hence is unsuitable for calculating theirreversible evolution of the entropy S in time t. Each irreversible process is accompanied by a positive entropy production P=dS/dt>=0 inside the system, which only vanishes in case of the equilibrium state. In order to overcome the above mentioned difficulties, we assign an operator P to the entropy production P=ds/dt>=0 inside the system, which only vanishes in case of the equilibrium state. In order to overcome the above mentioned difficulties, we assign an operator P to the entropy production P, which is defined by the eigenvalue equation P|u>=P|u> with the state vector |u> of the N-particle system. There was an extensive discussion about the relation between the production ofentropy P on one hand and the progressionof time t on the other. Making use of this concept, we combine the operator of entropy production P with the time-development operator U(t,t_0) of the system and finally deduce the indinitesimal unitary operator U(t+tau, t)=1+(i/k)tauP by means of verygeneral assumptions. Here P means the generator of theatomic entropy unit. Similarly to P we also treat the time t as an observable, defined by t|u>=t|u>.We apply the infinites imal time-evolution relation i[P,t]=k, which is independent of tau. It shows that the operators P and t do not commute, and hence P and hence P and t are not sharply defined simultaneously. Instead we have uncertainties DELTAP and DELTAt on measuring P and t, which are given by the P-t uncertainty relation DELTAP DELTAt >=k/2. It readily allows a discussion of the evolution of the entropy S of the isolated system in time t from S' to S_max. Now, the thermal equilibrium is given by P=0, DELTAP=0, and thus the lifetime of the equilibrium state DELTAt=infinity. According to the P-t uncertainty relation, the Boltzmann constant k is similarly important to the quantum thermodynamics of irreversible proccesses like Planck's constant h to usual quantum mechanics.
机译:我们考虑了一个孤立的N粒子系统从熵S = S'的非平衡状态到最大熵S = S-max,S'<= S_max的平衡状态的时间演化。常规密度矩阵理论在S的时间发展中的应用使我们得出dS / dt = 0:熵S在时间t不变。因此,无论我们考虑非平衡状态还是平衡状态都是无关紧要的。因此,系统不能通过熵产生dS / dt> 0从S'到S_max不可逆地变化。这是一个自相矛盾的结果,与经验相矛盾。可以追溯到冯·诺依曼方程,该方程原则上描述了可逆过程,因此不适合计算它们在时间t内的熵S的可逆演化。每个不可逆过程都伴随着系统内部的正熵产生P = dS / dt> = 0,仅在平衡状态下消失。为了克服上述困难,我们为系统内部的熵产生P = ds / dt> = 0分配了一个算符P,该熵仅在平衡状态下消失。为了克服上述困难,我们为熵产生P分配一个算子P,该熵产生P由特征值方程P | u> = P | u>与N粒子系统的状态向量| u>定义。关于一方面的熵P的产生与另一方面时间t的进展之间的关系进行了广泛的讨论。利用这个概念,我们将熵产生算子P与系统的时间发展算子U(t,t_0)结合起来,最终推导出极小din算子U(t + tau,t)= 1 +(i / k)tauP通过非常一般的假设。在此,P表示解剖学熵单位的生成器。与P相似,我们也将时间t视为可观察的,由t | u> = t | u>定义。我们应用无穷小时间演化关系i [P,t] = k,与tau无关。这表明算子P和t不会通勤,因此P和P和t不会同时清晰地定义。相反,我们在测量P和t时具有不确定性DELTAP和DELTAt,这由P-t不确定性关系DELTAP DELTAt> = k / 2给出。很容易讨论在时间t中从S'到S_max的隔离系统的熵S的演变。现在,热平衡由P = 0,DELTAP = 0给出,因此平衡状态的寿命DELTAt = infinity。根据P-t不确定性关系,玻尔兹曼常数k对于不可逆过程的量子热力学同样重要,例如普朗克常数h对于常规量子力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号