首页> 外文期刊>Chemical geology >Applying the Midas touch: Differing toxicity of mobile gold and platinum complexes drives biomineralization in the bacterium Cupriavidus metallidurans
【24h】

Applying the Midas touch: Differing toxicity of mobile gold and platinum complexes drives biomineralization in the bacterium Cupriavidus metallidurans

机译:运用Midas触摸:流动的金和铂络合物的不同毒性驱动金属铜尿细菌中的生物矿化作用

获取原文
获取原文并翻译 | 示例
           

摘要

The beta-Proteobacterium Cupriavidus metallidurans CH34, which dominates biofilm communities on natural gold (Au) grains, is a key species involved in their (trans)formation. Gold(III)-chloride complexes, with toxicity levels similar to those of Hg- and Ag-ions, are rapidly sorbed by C. metallidurans cells and detoxified by active reductive precipitation to metallic Au nanoparticles. In this study, we exposed C. metallidurans CH34 to a range of environmentally-relevant Au(I)- and Pt(II/IV)-complexes with differing toxicity levels, i.e., Au(I)-thiosulfate > Au(I)-cyanide, and cisplatin > Pt(IV)-chloride > Pt(II)-cyanide. The aim was to investigate how Au/Pt-complex toxicity, in combination with the metabolic state of cells, affects Au/Pt accumulation, speciation and biomineralization. Overall, more Au(I)- than Pt-complexes were accumulated. Significantly more Au(I)-thiosulfate was taken up by metabolically active vs. inactive or dead cells. Toxicity of Au(I)-complexes was 'managed' via the formation of intermediate species, e.g., Au(I)-C mixed ligand complexes. Over time Au(I) associated with active cells was reduced to metallic particles, with higher rates of transformation being observed in experiments amended with Au(I)-thiosulfate- compared to Au(I)-cyanide complexes. In contrast, Pt uptake did not differ with respect to metabolic state. Pt(IV)-complexes were reduced to Pt(II) within 1 min of amendment; further reduction of the Pt( II) was not observed. In conclusion, toxicity of Au/Pt-complexes is linked to the ability of cells to take up and actively detoxify the complexes. Gold uptake was linked to the detoxification of the Au(I)-complexes via active reductive precipitation to Au(0). In contrast, metabolic activity/toxicity did not influence Pt accumulation and/or transformation. This indicates that the ability of bacteria to cycle Au via mobilization, accumulation and biomineralization provides a selective advantage for organisms able to detoxify highly mobile Au-complexes. Because Pt-complexes are not taken up as readily and are hence less toxic, they do not provide a similar selective advantage, and hence Pt is less readily cycled. This may explain the substantially higher environmental mobility of Au compared to Pt. (C) 2016 Elsevier B.V. All rights reserved.
机译:在天然金(Au)晶粒上占主导地位的生物膜群落的β-Proteobacteriummetalriaduras CH34是参与其(转化)形成的关键物种。毒性水平与Hg和Ag离子相似的氯化金(III)络合物迅速被金属利尿梭菌细胞吸收,并通过活性还原性沉淀作用脱毒成金属Au纳米颗粒。在这项研究中,我们将角腐金属梭菌CH34暴露于具有不同毒性水平的一系列与环境相关的Au(I)-和Pt(II / IV)-配合物,即Au(I)-硫代硫酸盐> Au(I)-氰化物和顺铂> Pt(IV)-氯化物> Pt(II)-氰化物。目的是研究Au / Pt复合毒性与细胞的代谢状态如何影响Au / Pt积累,物种形成和生物矿化。总体而言,积累了比Pt复合物更多的Au(I)-。相对于无活性或死细胞,新陈代谢活跃的细胞吸收了更多的Au(I)-硫代硫酸盐。通过形成中间物种,例如Au(I)-C混合配体复合物来``管理''Au(I)复合物的毒性。随着时间的流逝,与活性细胞相关的Au(I)被还原为金属颗粒,与Au(I)-氰化物络合物相比,在用Au(I)-硫代硫酸盐-修饰的实验中观察到了更高的转化率。相反,Pt吸收在代谢状态方面没有差异。修饰后1分钟内将Pt(IV)络合物还原为Pt(II);没有观察到Pt(II)的进一步降低。总之,Au / Pt复合物的毒性与细胞吸收复合物并主动使复合物解毒的能力有关。金的吸收通过主动还原性沉淀为Au(0)与Au(I)络合物的解毒作用有关。相反,代谢活性/毒性不影响Pt的积累和/或转化。这表明细菌通过动员,积累和生物矿化来循环Au的能力为能够对高度可移动的Au复合物进行解毒的生物提供了选择优势。由于Pt络合物不易吸收,因此毒性较小,因此它们没有提供类似的选择性优势,因此Pt较难循环。这可以解释与Pt相比,Au的环境迁移率要高得多。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号