...
首页> 外文期刊>Chemical geology >Isotopic evidence of the pivotal role of sulfite oxidation in shaping the oxygen isotope signature of sulfate
【24h】

Isotopic evidence of the pivotal role of sulfite oxidation in shaping the oxygen isotope signature of sulfate

机译:亚硫酸盐氧化在塑造硫酸盐的氧同位素特征中的关键作用的同位素证据

获取原文
获取原文并翻译 | 示例

摘要

The oxygen isotope composition of sulfate serves as an archive of oxidative sulfur cycling. Studies on the aerobic oxidation of reduced sulfur compounds showed discrepancies in the relative incorporation of oxygen from dissolved molecular oxygen (O_2) and water (H_2O) into newly formed sulfate, which likely result from slight differences in the production and consumption rate of sulfoxy intermediates that exchange oxygen isotopes with water. Sulfite is often considered the final sulfoxy intermediate in the oxidation of reduced sulfur compounds to sulfate and its residence time strongly affects the oxygen isotope signature of produced sulfate. However, data on the oxygen isotope signature of sulfate derived from sulfite oxidation are scarce.We determined the oxygen isotope effects of abiotic oxidation of sulfite with O_2 or ferric iron (Fe~(3+)) under different pH conditions (pH1, 4.9 and 13.3). These parameters impact the relative contribution of oxygen from H_2O and O_2 to the produced sulfate, and control the competition between the rates of oxygen isotope exchange between sulfite and water and the sulfite oxidation. There is a striking overlap in the range of oxygen isotope offsets between sulfate and water from our experiments at different chemical conditions (δ~(18)O_(SO4-H2O) from 5.9‰ for anaerobic oxidation with Fe~(3+) up to 17.6‰ for oxidation at low pH with O_2 as sole oxidant, respectively) with the variations in the oxygen isotope composition of sulfate derived from oxidative processes in the environment. This implies that oxygen isotope effects during sulfite oxidation largely control the isotope signature of sulfate derived from the oxidation of sulfur compounds. However, our results also show that preexisting non-equilibrium isotope signatures of sulfite are likely partially preserved in the final sulfate product under most environmental conditions. Our study furthermore provides a mechanistic explanation for positive isotope offsets between the oxygen isotope composition of sulfate and water observed in anoxic pyrite oxidation experiments with Fe~(3+) as the sole oxidizing agent. This apparently inverse isotope effect is caused by the interplay between sulfite-water oxygen exchange and normal kinetic isotope fractionation effects during sulfite oxidation, the former driving the isotope composition towards the isotope equilibrium fractionation between sulfite and water, inducing a positive offset whereas the latter induces a negative offset.
机译:硫酸盐的氧同位素组成用作氧化硫循环的档案。对还原性硫化合物的好氧氧化研究表明,溶解的分子氧(O_2)和水(H_2O)中的氧相对掺入新形成的硫酸盐中存在差异,这可能是由于亚硫酸盐中间体的生产和消耗速率略有不同所致。与水交换氧同位素。亚硫酸盐通常被认为是还原的硫化合物氧化为硫酸盐的最终亚砜氧基中间体,其停留时间强烈影响所产生硫酸盐的氧同位素特征。然而,关于亚硫酸盐氧化产生的硫酸盐的氧同位素特征的数据很少。我们确定了在不同的pH条件(pH1、4.9和4.0)下,O_2或三价铁(Fe〜(3+))对亚硫酸盐的非生物氧化的氧同位素效应。 13.3)。这些参数影响H_2O和O_2中氧气对产生的硫酸盐的相对贡献,并控制亚硫酸盐和水之间的氧同位素交换速率与亚硫酸盐氧化之间的竞争。根据我们的实验,在不同化学条件下,硫酸盐和水之间的氧同位素偏移范围存在惊人的重叠(δ〜(18)O_(SO4-H2O)从5.9‰到Fe〜(3+)直至厌氧氧化直至在低pH值下分别以O_2作为唯一氧化剂的氧化反应的浓度为17.6‰),而硫酸盐的氧同位素组成因环境中的氧化过程而异。这意味着亚硫酸盐氧化过程中的氧同位素效应在很大程度上控制了源自硫化合物氧化的硫酸盐的同位素特征。但是,我们的结果还表明,在大多数环境条件下,最终的硫酸盐产品中可能部分保留了亚硫酸盐的先前存在的非平衡同位素特征。我们的研究进一步提供了在以Fe〜(3+)为唯一氧化剂的黄铁矿氧化实验中观察到的硫酸盐和水的氧同位素组成之间正同位素偏移的机理解释。这种明显的反同位素效应是由亚硫酸盐氧化过程中亚硫酸盐与水之间的氧交换和正常的动力学同位素分馏作用之间的相互作用引起的,前者驱动同位素组成朝亚硫酸盐和水之间的同位素平衡分馏,引起正偏移,而后者引起负偏移量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号