...
首页> 外文期刊>Chemical geology >Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons
【24h】

Biogeochemical cycling of iron in the Archean-Paleoproterozoic Earth: Constraints from iron isotope variations in sedimentary rocks from the Kaapvaal and Pilbara Cratons

机译:太古宙古生代地球中铁的生物地球化学循环:来自Kaapvaal和Pilbara Cratons沉积岩中铁同位素变化的约束

获取原文
获取原文并翻译 | 示例

摘要

Iron isotope compositions of low-metamorphic grade samples of Archean-Paleoproterozoic sedimentary rocks obtained from fresh drill core from the Kaapvaal Craton in South Africa and from the Pilbara Craton in Australia vary by similar to 3 parts per thousand in Fe-56/Fe-54 ratios, reflecting a variety of weathering and diagenetic processes. Depositional ages for the 120 samples studied range from 3.3 to 2.2 Ga, and Fe, C, and S contents define several compositional groups, including samples rich in Fe, organic carbon, carbonate, and sulfide.The delta(56)Fe values for low-C-org, low-(carb), and low-S sedimentary rocks are close to 0 parts per thousand, the average of igneous rocks. This range is essentially the same as that of C-org-poor late Cenozoic loess, aerosol, river loads, and marine sediments and those of C-org-poor Phanerozoic-Proterozoic shales. That these delta(56)Fe values are the same as those of igneous rocks suggests that Fe has behaved conservatively in bulk sediments during sedimentary transport, diagenesis, and lithification since the Archean. These observations indicate that, if atmospheric O-2 contents rose dramatically between 2.4 and 2.2 Ga, as proposed by many workers, such a rise did not produce a significant change in the bulk Fe budget of the terrestrial sedimentary system. If the Archean atmosphere was anoxic and Fe was lost from bedrock during soil formation, any isotopic fractionation between aqueous ferrous Fe (Fe-aq(2+)) and Fe-bearing minerals must have been negligible. In contrast, if the Archean atmosphere was oxic, Fe would have been retained as Fe3+ hydroxides during weathering as it is today, which would produce minimal net isotopic fractionation in bulk detrital sediments.Siderite-rich samples have delta(56)Fe values of - 0.5 +/- 0.5 parts per thousand, and experimentally determined Fe-aq(2+) siderite fractionation factors suggest that these rocks formed from Fe, that had similar or slightly higher delta(56)Fe values. The delta(56)Fe values calculated for Fe-aq(2+) overlaps those of modem submarine hydrothermal fluids, but it is also possible that Fe-aq(2+) had delta(56)Fe values higher than those of modem hydrothermal fluids, depending upon the Fe-aq(2+)-Fe carbonate fractionation factor that is used. In contrast, C-org-rich samples and magnetite-rich samples have strongly negative 656 Fe values, generally between - 2.3 parts per thousand and - 1.0 parts per thousand, and available fluid-mineral fractionation factors suggest that the Fe-bearing minerals siderite and magnetite in these rocks formed in the presence of Fe-aq(2+) that had very delta(56)Fe values, between - 3 parts per thousand and -1 parts per thousand. Reduction of Fe3+ hydroxide by sulfide, precipitation of sulfide minerals, or incongruent dissolution of silicate minerals are considered unlikely means to produce significant quantities of low-delta(56)Fe Fe-aq(2+). We interpret microbial dissimilatory Fe3+ reduction (DIR) as the best explanation for producing such delta(56)Fe values for Fe-aq(2+), and our results suggest that DIR was a significant form of respiration since at least 2.9 Ga. (c) 2005 Elsevier B.V All rights reserved.
机译:从南非的Kaapvaal Craton和澳大利亚的Pilbara Craton的新鲜钻芯获得的低等变级品位太古代-古生代沉积岩的铁同位素组成在Fe-56 / Fe-54中千分之三比率,反映了各种风化和成岩过程。研究的120个样品的沉积年龄范围为3.3至2.2 Ga,Fe,C和S的含量定义了几个组成族,包括富含Fe,有机碳,碳酸盐和硫化物的样品。低含量的δ(56)Fe值-C-org,低-(carb)和低-S沉积岩接近火成岩平均值的千分之一。这个范围基本上与贫C org新生代黄土,气溶胶,河流负荷和海洋沉积物以及贫C org贫生代元古代的页岩相同。这些δ(56)Fe值与火成岩的Fe值相同,这表明自太古宙以来,Fe在散装沉积物中的沉积,输运,成岩作用和岩化过程中表现出保守性。这些观察结果表明,如果按照许多工人的建议,大气中O-2含量在2.4和2.2 Ga之间急剧上升,那么这种上升不会对陆地沉积系统的总铁预算产生显着变化。如果太古代大气是缺氧的,并且在土壤形成过程中铁从基岩中流失,则含水亚铁(Fe-aq(2+))和含铁矿物之间的同位素分馏必须忽略不计。相比之下,如果古宙大气是有氧的,那么在今天的风化过程中,Fe会以Fe3 +氢氧化物的形式保留下来,这将使散装碎屑沉积物中的净同位素分馏最小化。富含亚铁矿的样品的δ(56)Fe值为- 0.5 +/- 0.5千分之几,以及实验确定的Fe-aq(2+)菱铁矿分馏因子表明,这些岩石由Fe形成,具有相似或稍高的delta(56)Fe值。计算出的Fe-aq(2+)的delta(56)Fe值与现代海底热液的重叠,但Fe-aq(2+)的delta(56)Fe值也有可能高于现代热液流体,取决于所使用的Fe-aq(2 +)-Fe碳酸盐分馏因子。相比之下,富含Corg的样品和富含磁铁矿的样品具有656的负值,通常在-2.3千分之和-1.0千分之之间,并且可用的流体矿物分馏因子表明含铁矿物菱铁矿这些岩石中的磁铁矿和磁铁矿是在Fe-aq(2+)的存在下形成的,Fe-aq(2+)的Fe(δ)Fe值非常高,介于-3千分之几与-1千分之几之间。硫化物还原Fe3 +氢氧化物,硫化物矿物沉淀或硅酸盐矿物溶解不均匀被认为不太可能产生大量低δ(56)Fe Fe-aq(2+)。我们将微生物异化Fe3 +还原(DIR)解释为产生Fe-aq(2+)的此类del(56)Fe值的最佳解释,并且我们的结果表明,自至少2.9 Ga起,DIR是一种重要的呼吸形式。( c)2005 Elsevier BV保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号