首页> 外文期刊>Zeitschrift fur Angewandte Mathematik und Mechanik >Dynamic stress and electric field concentration in a functionally graded piezoelectric solid with a circular hole
【24h】

Dynamic stress and electric field concentration in a functionally graded piezoelectric solid with a circular hole

机译:具有圆孔的功能梯度压电固体中的动态应力和电场集中

获取原文
获取原文并翻译 | 示例
           

摘要

This work addresses the evaluation of the stress and electric field concentrations around a circular hole in a functionally graded piezoelectric plane subjected to anti-plane elastic SH-wave and in-plane time-harmonic electric load. All material parameters vary exponentially along a line of arbitrary orientation in the plane of the piezoelectric material under consideration. The computational tool is a non-hypersingular traction based boundary integral equation method (BIEM). The kernel functions used in the BIEM are exact fundamental solutions that have been derived in previous work by the authors. Numerical solutions for the stress and electric field concentration factors (SCF and EFCF, respectively) around the perimeter of the hole are obtained. The simulation demonstrates the efficiency of the computational approach and its potential to reveal in an adequate way the dynamic stress and electric field distribution around the hole. Presented are results showing their dependence on various system parameters as e.g. the electro-mechanical coupling, the type of the dynamic load and its characteristics, the wave-hole and wave-material interaction and the magnitude and direction of the material inhomogeneity. Dedicated to Professor Peter Wriggers on the occasion of his 60th birthday This work addresses the evaluation of the stress and electric field concentrations around a circular hole in a functionally graded piezoelectric plane subjected to anti-plane elastic SH-wave and in-plane time-harmonic electric load. All material parameters vary exponentially along a line of arbitrary orientation in the plane of the piezoelectric material under consideration. The computational tool is a non-hypersingular traction based boundary integral equation method (BIEM). The kernel functions used in the BIEM are exact fundamental solutions that have been derived in previous work by the authors. Numerical solutions for the stress and electric field concentration factors (SCF and EFCF, respectively) around the perimeter of the hole are obtained. The simulation demonstrates the efficiency of the computational approach and its potential to reveal in an adequate way the dynamic stress and electric field distribution around the hole. Presented are results showing the dependence on various system parameters as e.g. the electro-mechanical coupling, the type of the dynamic load and its characteristics, the wave-hole and wave-material interaction and the magnitude and direction of the material inhomogeneity.
机译:这项工作解决了功能梯度压电平面中承受反平面弹性SH波和平面内时谐波电载荷的圆孔周围应力和电场集中的评估问题。所有材料参数都在所考虑的压电材料平面内沿任意方向的线呈指数变化。该计算工具是基于非超引力的边界积分方程法(BIEM)。 BIEM中使用的内核函数是作者在以前的工作中得出的确切的基本解决方案。获得了围绕孔的周边的应力和电场集中系数(分别为SCF和EFCF)的数值解。仿真表明了计算方法的效率及其以适当的方式揭示孔周围的动态应力和电场分布的潜力。呈现的结果显示了它们对各种系统参数的依赖性,例如机电耦合,动载荷的类型及其特性,波孔和波材料的相互作用以及材料不均匀性的大小和方向。献给Peter Wriggers教授60岁生日之际,这项工作着眼于功能梯度压电平面中承受反平面弹性SH波和平面内时谐波的圆孔周围应力和电场集中的评估电力负荷。所有材料参数都在所考虑的压电材料平面内沿任意方向的线呈指数变化。该计算工具是基于非超引力的边界积分方程法(BIEM)。 BIEM中使用的内核函数是作者在以前的工作中得出的确切的基本解决方案。获得了围绕孔的周边的应力和电场集中系数(分别为SCF和EFCF)的数值解。仿真表明了计算方法的效率及其以适当的方式揭示孔周围的动态应力和电场分布的潜力。呈现的结果显示了对各种系统参数的依赖性,例如机电耦合,动载荷的类型及其特性,波孔和波材料的相互作用以及材料不均匀性的大小和方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号