首页> 外文期刊>Houston Journal of Mathematics >Rips complexes and covers in the uniform category
【24h】

Rips complexes and covers in the uniform category

机译:撕破制服类别中的建筑物和掩体

获取原文
获取原文并翻译 | 示例
           

摘要

James [20] introduced uniform covering maps as an analog of covering maps in the topological category. Subsequently Berestovskii and Plaut [3] introduced a theory of covers for uniform spaces generalizing their results for topological groups [1]-[2]. Their main concepts are discrete actions and pro-discrete actions, respectively. In case of pro-discrete actions Berestovskii and Plaut provided an analog of the universal covering space and their theory works well for the so-called coverable spaces. As will be seen in Section 7, [3] generalizes only regular covering maps in topology and pro-discrete actions may not be preserved by compositions. In this paper we redefine the uniform covering maps and we generalize pro-discrete actions using Rips complexes and the chain lifting property. We expand the concept of generalized paths of Krasinkiewicz and Minc [21]. One way to do it is by embedding X in a space with good local properties and this is done in Section 6. Another way is by systematic use of Rips complexes. In the topological category one uses paths in X originating from a base point to construct the universal covering space eX. We use paths in Rips complexes and their homotopy classes possess a natural uniform structure, a generalization of the basic topology on eX. Applying Rips complexes leads to a natural class of uniform spaces for which our theory of covering maps works as well as the classical one, namely the class of locally uniform joinable spaces. In the case of metric continua (compact and connected metric spaces) that class is identical with pointed 1-movable spaces, a well-understood class of spaces introduced by shape theorists (see [9] or [24]). As an application of our results we present an exposition in [7] of Prajs' [30] homogeneous curve that is path-connected but not locally connected.
机译:James [20]引入了统一的覆盖图,作为拓扑类别中覆盖图的类似物。随后,Berestovskii和Plaut [3]引入了均匀空间覆盖理论,将其对拓扑群[1]-[2]的结果进行了概括。它们的主要概念分别是离散动作和离散动作。在采取离散行动的情况下,贝雷斯托夫斯基(Berestovskii)和普劳特(Plaut)提供了通用覆盖空间的类似物,它们的理论对所谓的可覆盖空间非常有效。如第7节所述,[3]仅概括了拓扑中的常规覆盖图,并且合成可能无法保留离散操作。在本文中,我们重新定义了均匀的覆盖图,并使用Rips配合物和链提升特性来推广离散操作。我们扩展了Krasinkiewicz和Minc的广义路径的概念[21]。一种方法是将X嵌入具有良好局部特性的空间中,这在第6节中完成。另一种方法是系统地使用Rips配合物。在拓扑类别中,使用从基点开始的X中的路径构造通用覆盖空间eX。我们在Rips复合体中使用路径,它们的同伦类具有自然统一的结构,这是eX上基本拓扑的概括。应用Rips配合物会导致自然的一类统一空间,我们的覆盖图理论也适用于该类统一空间,而经典的一类就是局部统一可连接空间。在度量连续体(紧实和连通的度量空间)的情况下,该类与有向1可移动空间相同,这是形状理论家引入的一种很好理解的空间类(请参见[9]或[24])。作为我们结果的应用,我们在Prajs [30]均质曲线的[7]中给出了一条路径连接但非局部连接的说明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号