首页> 外文期刊>Chemical geology >Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification
【24h】

Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification

机译:激光烧蚀ICP-MS对熔体夹杂物进行痕量元素分析的主要方法:定量方法

获取原文
获取原文并翻译 | 示例
           

摘要

Current techniques for the quantification of melt inclusion chemistry require that inclusions are compositionally homogeneous and that post-entrapment devitrification or crystallization onto the inclusion walls could be reversed by appropriate re-melting. Laser-ablation ICP-MS provides a technique by which single heterogeneous inclusions can be analysed, thus avoiding the above prerequisites. Because host mineral is ablated with the inclusion, quantification of the melt composition necessitates deconvolution of the mixed signal by an internal standard. This can be obtained in various ways, including: (1) a fixed, pre-determined, concentration of a given element in the me (2) whole rock differentiation trends in a given igneous suite; (3) a constant, measured, distribution coefficient between the host and the inclusion melt and (4) determination of the volume ratios between the inclusion and total ablated volume. These four approaches were tested on a large set of cogenetic inclusions from a single plagioclase crystal in a rhyodacitic intrusion. Results suggest that quantification through whole rock differentiation trends is the most widely applicable, the most accurate and the least time-consuming technique, provided that the resulting data are critically interpreted with regard to the underlying assumptions. Uncertainties on the calculated element concentrations in the inclusions depend on the mass ratio between the melt inclusion and the host for a given ablation. They are of the order of 10% if the melt inclusion contributes more than 20% to the bulk analytical signal of a particular element. Calculated limits of detection for spherical 10 mum melt inclusions are of the order of a few ppm for elements strongly enriched in the melt relative to the host crystal. Concentrations in the melt inclusions can be determined even for elements enriched in the host mineral, but in this case uncertainties and calculated limits of detection increase with the concentration in the host. The uncertainty on the melt composition from a set of cogenetic inclusions can be commonly decreased by calculating of an uncertainty-weighted average of the concentration and their uncertainty. (C) 2002 Elsevier Science B.V. All rights reserved. [References: 25]
机译:用于定量熔体夹杂物化学的当前技术要求夹杂物在成分上是均质的,并且在夹杂物壁上的包埋后失透或结晶可以通过适当的重熔而逆转。激光烧蚀ICP-MS提供了一种可以分析单个异质夹杂物的技术,从而避免了上述先决条件。由于主体矿物被夹杂物烧蚀,因此熔融成分的定量必须通过内标对混合信号进行解卷积。这可以通过多种方式获得,包括:(1)熔体中给定元素的固定,预定浓度; (2)在给定的火成岩组中整个岩石的分化趋势; (3)在主体和夹杂物熔体之间的常数,测量的分布系数,以及(4)确定夹杂物和总烧蚀体积之间的体积比。在流纹岩侵入体中,对来自单个斜长石晶体的大量同基因夹杂物测试了这四种方法。结果表明,通过完整的岩石分异趋势进行量化是应用最广泛,最准确且耗时最少的技术,前提是要严格根据基本假设对结果数据进行解释。对于给定的烧蚀,夹杂物中计算元素浓度的不确定性取决于熔体夹杂物与主体之间的质量比。如果熔体夹杂物对特定元素的整体分析信号的贡献超过20%,则约为10%。对于相对于基质晶体而言在熔体中高度富集的元素,球形10μm球形熔体夹杂物的计算检出限约为几ppm。即使对于富集在主体矿物中的元素,也可以确定熔融夹杂物中的浓度,但是在这种情况下,不确定性和计算出的检测极限随主体中的浓度而增加。通常可以通过计算浓度及其不确定度的不确定度加权平均值来减少一组共生夹杂物对熔体成分的不确定度。 (C)2002 Elsevier Science B.V.保留所有权利。 [参考:25]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号