...
首页> 外文期刊>Hydrometallurgy >Microwave-assisted hydrothermal synthesis of nanocrystalline lithium-ion sieve from biogenic manganese oxide, its characterization and lithium sorption studies
【24h】

Microwave-assisted hydrothermal synthesis of nanocrystalline lithium-ion sieve from biogenic manganese oxide, its characterization and lithium sorption studies

机译:生源性锰氧化物的微波水热合成纳米晶锂离子筛,表征及锂吸附研究

获取原文
获取原文并翻译 | 示例

摘要

Biogenic birnessite (BB) is a stable form of manganese oxide. It is widely distributed in the natural environment and originates from microbial oxidation. It has potential applications in functional material fabrication because of its unique morphology. Using a microwave-assisted hydrothermal method, nano-sized lithium-ion sieves were prepared from BB with a short reaction time. A combination of sorption experiments and structural characterization was used to compare Li uptake by nanoparticles with that by microparticles. X-ray diffraction (XRD) patterns showed that the nano-and microparticles had similar fundamental structures, but the lattice parameter of nanopartides is smaller than micropartides. Mn K-edge X-ray absorption fine structure (XAFS) spectroscopy showed that the oxidation state of Mn increased from 3.50 to 3.69 with decreasing crystal size, and the Mn-Mn atomic distance decreased from 2.92 to 2.89 angstrom. Li extraction resulted in significant cleavage of the micropartide surfaces. The oxidation state of Mn increased to 4.0, and the Mn-Mn atomic distance decreased to 2.86 angstrom. XRD showed that dissolution of the polycrystalline phase of the nanopartides occurred during acid washing. However, the EXAFS spectrum was similar to that of the original material before acid washing. The specific surface areas and U-sorption capacities of the nano-sized lithium-ion sieves prepared from manganese carbonate were significantly higher than those of a similarly prepared micro-sized lithium-ion sieve. The results obtained in this work suggest that BB is a promising starting material for the energy-saving fabrication of functional materials for highly efficient Li recovery. (C) 2015 Elsevier B.V. All rights reserved.
机译:生物源水钠锰矿(BB)是氧化锰的稳定形式。它广泛分布于自然环境中,起源于微生物氧化。由于其独特的形态,它在功能材料制造中具有潜在的应用。采用微波辅助水热法,由BB制备了纳米尺寸的锂离子筛,反应时间短。结合了吸附实验和结构表征,比较了纳米粒子和微粒子对锂的吸收。 X射线衍射(XRD)图谱表明,纳米粒子和微粒具有相似的基本结构,但纳米粒子的晶格参数小于微米粒子。 Mn K边缘X射线吸收精细结构(XAFS)光谱显示,随着晶体尺寸的减小,Mn的氧化态从3.50升高至3.69,Mn-Mn原子距离从2.92降至2.89埃。锂的提取导致微颗粒表面的明显裂解。 Mn的氧化态增加到4.0,Mn-Mn原子距离减小到2.86埃。 XRD显示在酸洗过程中发生了纳米粒子的多晶相的溶解。但是,EXAFS光谱类似于酸洗之前的原始材料。由碳酸锰制备的纳米尺寸锂离子筛的比表面积和U-吸附能力显着高于类似制备的微米尺寸的锂离子筛的比表面积和U-吸附能力。在这项工作中获得的结果表明,BB是一种有希望的原材料,可用于节能制造功能材料以实现高效的Li回收。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号