...
首页> 外文期刊>Hydrometallurgy >Kinetics and reaction mechanism of gold cyanidation: Surface reaction model via Au(I)-OH-CN complexes
【24h】

Kinetics and reaction mechanism of gold cyanidation: Surface reaction model via Au(I)-OH-CN complexes

机译:金氰化的动力学和反应机理:Au(I)-OH-CN络合物的表面反应模型

获取原文
获取原文并翻译 | 示例
           

摘要

The current status of the mechanism of gold cyanidation based on diffusion and surface adsorption-reaction models are reviewed. Published rate data based on chemical oxidation from flat gold surfaces in pure aerated cyanide solutions are analysed to show a reaction order of 2.7 with respect to cyanide at low concentrations. At higher cyanide concentrations, the reaction rate reaches a limiting value of R_(Au(lim))=7.3 X 10~(-6) mol m~(-2) s~(-1), independent of the cyanide concentration and stirring rate. This chemically controlled dissolution of gold in pure cyanide solutions is considered to be different from the widely reported cyanide or oxygen diffusion controlled dissolution of gold, depending on their relative concentrations. The proposed reaction mechanism to rationalise this behaviour involves the formation of a heterogeneous redox transition state (Au.H_2O)_2.(CN~-)_(2-3).(O_2) which produces the intermediate Au(I)(OH)(CN)~- on the gold surface. Oxygen is reduced to hydrogen peroxide which may degrade in three ways: (i) oxidize gold to produce the same gold(I) intermediates on surface, (ii) oxidize cyanide to cyanate (iii) disproportionate to water and oxygen. The surface adsorbed Au(I) intermediate reacts with cyanide to produce more stable Au(CN)_2~- in solution. The proposed surface chemical model rationalises the reaction order of ≈ 3 at low cyanide concentrations and calculates an intrinsic rate constant of k_(Au) =8.6 X10~(-6) mol m~(-2) s~(-1) for gold cyanidation by oxygen. This value is in reasonable agreement with the value of K=6.9 X 10~(-6) mol m~(-2) s~(-1) based on the model proposed by Wadsworth et al. [Wadsworth, M.E., Zhu, X., Thompson, J.S., Pereira, C.J., 2000. Gold dissolution and activation in cyanide solution: kinetics and mechanism. Hydrometallurgy, 57, 1-11.], which considered the mass transfer away from the active crystalline gold surface site followed by fast charge transfer, combined with two-electron reduction of oxygen on the gold surface.
机译:综述了基于扩散和表面吸附反应模型的金氰化机理的现状。分析基于纯金充气氰化物溶液中平坦金表面化学氧化的公开速率数据,以显示低浓度下相对于氰化物的反应阶数为2.7。在较高的氰化物浓度下,反应速率达到R_(Au(lim))= 7.3 X 10〜(-6)mol m〜(-2)s〜(-1)的极限值,与氰化物浓度和搅拌无关率。据认为,这种化学控制的金在纯氰化物溶液中的溶解与广泛报道的氰化物或氧扩散控制的金的溶解不同,这取决于金的相对浓度。提出的使这种行为合理化的反应机理涉及形成异质氧化还原过渡态(Au.H_2O)_2。(CN〜-)_(2-3)。(O_2),生成中间Au(I)(OH) (CN)〜-在金表面。氧气被还原为过氧化氢,可通过三种方式降解:(i)氧化金以在表面上生成相同的金(I)中间体,(ii)将氰化物氧化为氰酸盐(iii)与水和氧气歧化。表面吸附的Au(I)中间体与氰化物反应,在溶液中产生更稳定的Au(CN)_2〜-。拟议的表面化学模型合理化了低氰化物浓度时≈3的反应顺序,并计算了金的k_(Au)= 8.6 X10〜(-6)mol m〜(-2)s〜(-1)的固有速率常数氧氰化。根据Wadsworth等人提出的模型,该值与K = 6.9 X 10〜(-6)mol m〜(-2)s〜(-1)的值合理吻合。 [Wadsworth,M.E.,Zhu,X.,Thompson,J.S.,Pereira,C.J.,2000。金在氰化物溶液中的溶解和活化:动力学和机理。湿法冶金,57,1-11。],其考虑了从活性晶体金表面位置传出质量,然后快速电荷转移,并结合了金表面上氧的两电子还原。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号