...
首页> 外文期刊>Chemical geology >Kinetics of sulfur isotope exchange between aqueous sulfide and thiosulfate involving intra- and intermolecular reactions at hydrothermal conditions
【24h】

Kinetics of sulfur isotope exchange between aqueous sulfide and thiosulfate involving intra- and intermolecular reactions at hydrothermal conditions

机译:硫化物与硫代硫酸盐之间的硫同位素交换动力学,涉及水热条件下的分子内和分子间反应

获取原文
获取原文并翻译 | 示例
           

摘要

Sulfur isotope exchange between sulfide (H2S) and thiosulfate (HSSO3H) can be described by the general rate law for a two-compound system (X and AB) with three exchangeable atoms (X, A, and B) proposed by [X. Chu, H. Ohmoto, Kinetics of isotope exchange reactions involving intra- and intermolecular reactions: I. Rate law for a system with two chemical compounds and three exchangeable atoms. Geochim. Cosmochim. Acta 55 1991 1953-1961]. According to the rate law, the isotope exchange reaction is comprised of one overall intramolecular exchange between sulfane (-SH or SH) and sulfonate (-SO3H or SO3H) sulfurs of thiosulfate (i.e., SHdouble left right arrowSO(3)H in thiosulfate) and two overall intermolecular exchanges between sulfide and sulfane sulfur of thiosulfate (i.e., H(2)Sdouble left right arrowSH of thiosulfate) and between sulfide and sulfonate sulfur of thiosulfate (i.e., H(2)Sdouble left right arrowSO(3)H of thiosulfate). The rate constants for the three overall exchange reactions and the equilibrium isotopic fractionation factors among sulfide, sulfane, and sulfonate of thiosulfate were estimated by fitting [F. Uyama, H. Chiba, M. Kusakabe, H. Sakai, Sulfur isotope exchange reaction in the aqueous system: thiosulfatesulfide-sulfate at hydrothermal temperature. Geochem. J. 19 1985 301-315] experimental data on sulfur isotope exchange between aqueous H2S and sodium thiosulfate by the least squares method. At temperatures of 100-170 degreesC, the equilibrium fractionation factors (in per mil) can be expressed as:10001nalpha(H2S-SH) = -0.32.7 +/- 0.055 (10(12)/T-4) + 2.676 +/- 0.341 (10(6)/T-2)10001nalpha(SO3H-SH)= -0.352 +/- 0.009(10(12)/T-4) + 7.523 +/- 0.054(10(6)/T-2)and10001nalpha(SO3H-SH)= -00293 +/- 0.058 (10(12)/T-4) - 4.871 +/- 0.357(10(6)/T-2)(T in K). At near-neutral pH, the overall rate (m(-1) s(-1)) for the sulfur isotope exchange between H2S and -SO3H of thiosulfate is described bylogk(SO3Hdouble left right arrowH2S)= -5.14(10(3)/T) + 10.35(T in K) with an activation energy of 98.3 kJ/mol at 100-170 degreesC.A comparison of the rates of sulfur exchanges among H2S, -SH, and -SO3H of thiosulfate with the rates of polysulfide-thiosulfate formation and disproportion reactions determined by [W.F. Giggenbach, Kinetics of the polysulfide-thiosulfate disproportionation up to 240 degreesC. Inorg. Chem. 13 1974b 1730-1733] suggests that the sulfur isotope exchanges between aqueous sulfide and thiosulfate may proceed via the formation and disproportionation of polysulfides (e.g., S3S2-, S4S2-, etc.):10H(2)S + 3S(2)O(3)(2-) = 4S(3)S(2-) + 2H(+) + 9H(2)OandSnS2- + SSO32- = Sn+1S2- + SO32-.The disproportionation reaction of polysulfides appears to control the exchange rate between S2- and S6+ atoms in thiosulfate and is considered the rate-determining step in the sulfate-sulfide exchange reaction rather than the intramolecular exchange of thiosulfate proposed by [H. Ohmoto, A.C. Lasaga, Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta 46 1982 1727-1745]. Therefore, polysulfides may play an important role in the chemical and isotopic reactions between aqueous sulfide and sulfate under hydrothermal conditions. (C) 2004 Elsevier B.V. All rights reserved.
机译:硫化物(H2S)和硫代硫酸盐(HSSO3H)之间的硫同位素交换可以通过[X.]提出的具有三个可交换原子(X,A和B)的二化合物系统(X和AB)的一般速率定律来描述。 Chu,H. Ohmoto,涉及分子内和分子间反应的同位素交换反应动力学:I.具有两个化学化合物和三个可交换原子的系统的速率定律。 Geochim。宇宙猫55 1991 1953-1961]。根据速率定律,同位素交换反应包括硫代硫酸盐中的硫(-SH或SH)与磺酸盐(-SO3H或SO3H)之间的一种整体分子内交换(即,SH硫代硫酸盐中的SO(3)H左向右向左箭头)以及硫代硫酸盐的硫化物和硫磺硫之间的两个整体分子间交换(即,硫代硫酸盐的H(2)S左双右箭头SH)和硫代硫酸盐的硫化物和磺酸盐的硫磺之间(即H(2)S左双向右箭头SO(3)H硫代硫酸盐)。通过拟合[F.F.S,估计3个总交换反应的速率常数和硫代硫酸盐的硫化物,亚砜和磺酸盐之间的平衡同位素分馏因子。 Uyama,H. Chiba,M. Kusakabe,H. Sakai,水体系中的硫同位素交换反应:水热温度下的硫代硫酸盐硫化物硫酸盐。地球化学。 [J. 19 1985 301-315]通过最小二乘法在H2S水溶液和硫代硫酸钠之间进行硫同位素交换的实验数据。在100-170摄氏度的温度下,平衡分馏因子(以每密耳为单位)可以表示为:10001nalpha(H2S-SH)= -0.32.7 +/- 0.055(10(12)/ T-4)+ 2.676 + /-0.341(10(6)/ T-2)10001nalpha(SO3H-SH)= -0.352 +/- 0.009(10(12)/ T-4)+ 7.523 +/- 0.054(10(6)/ T- 2)和10001nalpha(SO3H-SH)= -00293 +/- 0.058(10(12)/ T-4)-4.871 +/- 0.357(10(6)/ T-2)(K中的T)。在接近中性的pH值下,硫代硫酸盐的H2S和-SO3H之间的硫同位素交换的总速率(m(-1)s(-1))由logk(SO3H向左向右向右向左向右向箭头H2S)= -5.14(10(3))描述/ T)+ 10.35(T in K)在100-170摄氏度下的活化能为98.3 kJ / mol。比较硫代硫酸盐在H2S,-SH和-SO3H之间的硫交换速率与多硫化物-硫代硫酸盐的形成和歧化反应由[WF Giggenbach,多硫化物-硫代硫酸盐歧化反应的动力学,最高可达240摄氏度。 Inorg。化学13 1974b 1730-1733]表明,硫化物水溶液和硫代硫酸盐之间的硫同位素交换可能通过多硫化物(例如,S3S2-,S4S2-等)的形成和歧化来进行:10H(2)S + 3S(2)O (3)(2-)= 4S(3)S(2-)+ 2H(+)+ 9H(2)OandSnS2- + SSO32- = Sn + 1S2- + SO32-。​​多硫化物的歧化反应似乎可以控制硫代硫酸盐中S2-和S6 +原子之间的交换速率,被认为是硫酸盐-硫化物交换反应中的决定速率的步骤,而不是[H.H.M.H.Chem.Soc。,Vol。,Vol。,Vol.19,1992]提出的分子内交换。 Ohmoto,A.C。Lasaga,水热系统中硫酸盐水溶液和硫化物之间反应的动力学。 Geochim。宇宙猫Acta 46 1982 1727-1745]。因此,在水热条件下,多硫化物可能在含水硫化物和硫酸盐之间的化学和同位素反应中起重要作用。 (C)2004 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号