...
首页> 外文期刊>Chemphyschem: A European journal of chemical physics and physical chemistry >Characteristic Spectral Patterns in the Carbon-13 Nuclear Magnetic Resonance Spectra of Hexagonal and Crenellated Graphene Fragments
【24h】

Characteristic Spectral Patterns in the Carbon-13 Nuclear Magnetic Resonance Spectra of Hexagonal and Crenellated Graphene Fragments

机译:六角形和锯齿状石墨烯碎片的碳13核磁共振谱中的特征谱图

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Nuclear magnetic resonance (NMR) spectroscopy is an important molecular characterisation method that may aid the synthesis and production of graphenes, especially the molecularscale graphene nanoislands that have gathered significant attention due to their potential electronic and optical applications. Herein, carbon-13 NMR chemical shifts were calculated using density functional theory methods for finite, increasingsize fragments of graphene, hydrogenated graphene (graphane) and fluorinated graphene (fluorographene). Both concentric hexagon-shaped (zigzag boundary) and crenellated (armchair) fragments were investigated to gain information on the effect of different types of flake boundaries. Convergence trends of the ~(13)C chemical shift with respect to increasing fragment size and the boundary effects were found and rationalised in terms of low-lying electronically excited states. The results predict characteristic behaviour in the ~(13)C NMR spectra. Particular attention was paid to the features of the signals arising from the central carbon atoms of the fragments, for graphene and crenellated graphene on the one hand and graphane and fluorographene on the other hand, to aid the interpretation of the overall spectral characteristics. In graphene, the central nuclei become more shielded as the system size increases whereas the opposite behaviour is observed for graphane and fluorographene. The ~(13)C signals from some of the perimeter nuclei of the crenellated fragments obtain smaller and larger chemical shift values than central nuclei for graphene and graphane/fluorographene, respectively. The diameter of the graphenic quantum dots with zigzag boundary correlates well with the predicted carbon-13 chemical shift range, thus enabling estimation of the size of the system by NMR spectroscopy. The results provide data of predictive quality for future NMR analysis of the graphene nanoflake materials.
机译:核磁共振(NMR)光谱学是一种重要的分子表征方法,可帮助石墨烯的合成和生产,尤其是由于其潜在的电子和光学应用而备受关注的分子级石墨烯纳米岛。本文中,使用密度泛函理论方法计算了石墨烯,氢化石墨烯(石墨烯)和氟化石墨烯(氟石墨烯)的有限的,不断增加尺寸的片段,从而计算出碳13 NMR化学位移。研究了同心六边形(锯齿形边界)和锯齿状(扶手椅)碎片,以获得有关不同类型薄片边界作用的信息。相对于增加的碎片尺寸和边界效应,发现了〜(13)C化学位移的收敛趋势,并根据低位电子激发态进行了合理化。结果预测了〜(13)C NMR光谱中的特征行为。特别注意由片段的中心碳原子产生的信号特征,一方面是石墨烯和锯齿状石墨烯,另一方面是石墨烯和氟石墨烯,以帮助解释整体光谱特性。在石墨烯中,随着系统尺寸的增加,中心核变得更加受屏蔽,而对于石墨烷和氟代石墨烯则观察到相反的行为。对于烯和石墨烯/氟代石墨烯,ene状片段的一些周边核中的〜(13)C信号分别比中心核具有较小和较大的化学位移值。具有锯齿形边界的石墨烯量子点的直径与预测的碳13化学位移范围具有很好的相关性,因此可以通过NMR光谱估计系统的大小。结果为石墨烯纳米片材料的未来NMR分析提供了预测质量的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号