...
首页> 外文期刊>Heat Treating Progress >QUENCHING FUNDAMENTALS--QUENCHING OF ALUMINUM ALLOYS: COOLING RATE, STRENGTH, AND INTERGRANULAR CORROSION
【24h】

QUENCHING FUNDAMENTALS--QUENCHING OF ALUMINUM ALLOYS: COOLING RATE, STRENGTH, AND INTERGRANULAR CORROSION

机译:淬火基本原理-铝合金淬火:冷却速率,强度和晶间腐蚀

获取原文
获取原文并翻译 | 示例
           

摘要

Aluminum is solution treated at temperatures generally in the range of 400 to 540°C (750 to 1000°F). During solution treatment, some alloying elements are re-dissolved to produce a solute-rich solid solution. The objective of this process is to maximize the concentration of hardening elements including copper, zinc, magnesium, and (or) silicon in the solid solution. The concentration and rate of dissolution of these elements increases with temperature. Therefore, solutionizing temperatures are usually near the liquidus temperature of the alloy. If an aluminum alloy is slowly cooled from an elevated temperature, alloying elements precipitate and diffuse from solid solution to concentrate at the grain boundaries, small voids, on undissolved particles, at dislocations, and other imperfections in the aluminum lattice as shown in Fig. 1. For optimal properties, it is desirable to retard this diffusion process and maintain the alloying elements in solid solution. This is done by quenching from the solution temperature. For quench-hardenable wrought alloys (2xxx, 6xxx, and 7xxx) and casting alloys such as 356, this is accomplished by the quenching process. The objective is to quench sufficiently fast to avoid undesirable concentration of the alloying elements in the defect and grain boundary structure while at the same time not quenching faster than necessary to minimize residual stresses, which may lead to excessive distortion or cracking. After quenching, aluminum alloys are aged, and during this process, a fine dispersion of elements and compounds are precipitated that significantly increase material strength. The diffusion process and precipitation kinetics vary with the alloy chemistry.
机译:铝通常在400至540°C(750至1000°F)的温度范围内进行固溶处理。在固溶处理过程中,某些合金元素会重新溶解以产生富溶质的固溶体。该过程的目的是使固溶体中包括铜,锌,镁和(或)硅在内的硬化元素的浓度最大化。这些元素的浓度和溶解速率随温度而增加。因此,固溶温度通常接近合金的液相线温度。如果将铝合金从升高的温度缓慢冷却,合金元素会从固溶体中沉淀并扩散,从而集中在铝晶格中的晶界,小空隙,未溶解的颗粒,位错和其他缺陷上,如图1所示。为了获得最佳性能,期望延迟该扩散过程并将合金元素保持在固溶体中。这是通过从溶液温度淬灭来完成的。对于可淬火的锻造合金(2xxx,6xxx和7xxx)和铸造合金(例如356),这是通过淬火过程实现的。目的是足够快地淬火以避免合金元素在缺陷和晶界结构中的不希望的集中,同时又不比为了使残余应力最小化所需的淬火速度快,淬火可能导致过度的变形或开裂。淬火后,铝合金进行时效处理,在此过程中,会沉淀出元素和化合物的精细分散,从而显着提高了材料强度。扩散过程和沉淀动力学随合金化学性质而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号