首页> 外文学位 >Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys.
【24h】

Microstructural-Scale Model for Surfaces Spreading of Intergranular Corrosion in Sensitized Stainless Steels and Aluminum-Magnesium (AA5XXX) Alloys.

机译:敏化不锈钢和铝镁(AA5XXX)合金中晶间腐蚀表面扩展的微观结构模型。

获取原文
获取原文并翻译 | 示例

摘要

Components from AA5XXX (Al-Mg alloys with more than 3 wt% Mg) alloys are X attractive due to availability of low cost, high strength to weight ratio and good weldability. Therefore, these alloys have potential applications in Naval ships. However, these alloys become susceptible to IGC (intergranular corrosion) due to beta-phase precipitation due to improper heat treatment or inadvertent thermal exposure. Stainless steels may also become susceptible due to carbide precipitation and chromium depletion on grain boundaries. IGC susceptibility depends on the interplay between the metallurgical conditions, electrochemical conditions, and chemical conditions. Specific combinations cause IGC while others do not. The objective of this study is to investigate the conditions which bring about surface spreading of IGC in these alloy classes.;To accomplish this goal, a microstructure scale model was developed with experimental inputs to understand the 2-D IGC spreading in stainless steels and AA5XXX alloys. The conditions strongly affecting IGC spreading were elucidated. Upon natural and artificial aging, the stainless steels become susceptible to intergranular corrosion because of chromium depletion in the grain boundaries. After aging Al-Mg (AA5XXX) alloys show susceptibility due to the precipitation of the beta-phase (Al3Mg7) in the grain boundaries. Chromium depleted grain boundaries in stainless steels are anodically more active as compared to the interior of the grains. (3-phase rich grain boundaries have lower OCP (open circuit potential) and pitting potentials as compared to the Al-Mg solid solutions.;A new approach to modeling the IGC surface spreading in polycrystalline materials that is presented. This model is the first to couple several factors into one granular scale model that illustrates the way in which they interact and IGC occurs. It sheds new information on conditions which cause IGC spreading in two alloy classes and describes a new theory for the critical potential associated with IGC. The outcomes from this contribute to ways to advance the goal of corrosion resistant computational design of alloys, guiding mitigation strategies for suppressing IGC in existing alloys, and to damage prognosis aimed at predicting damage and structural integrity.
机译:AA5XXX(Mg含量大于3 wt%的Al-Mg合金)合金的成分因具有低成本,高强度重量比和良好的焊接性而极具吸引力。因此,这些合金在海军舰船中具有潜在的应用。但是,由于不适当的热处理或不适当的热暴露而导致的β相沉淀,这些合金容易受到IGC(晶间腐蚀)的影响。由于碳化物沉淀和晶界上的铬耗尽,不锈钢也可能变得易受影响。 IGC敏感性取决于冶金条件,电化学条件和化学条件之间的相互作用。特定的组合会导致IGC,而其他组合则不会。本研究的目的是研究在这些合金类别中导致IGC表面扩散的条件。;为了实现这一目标,建立了具有实验输入的微观尺度模型,以了解二维IGC在不锈钢和AA5XXX中的扩散合金。阐明了严重影响IGC扩散的条件。经过自然和人工时效处理后,由于晶界中的铬耗尽,不锈钢变得容易受到晶间腐蚀。时效后,由于β-相(Al3Mg7)在晶界中的沉淀,Al-Mg(AA5XXX)合金表现出敏感性。与晶粒内部相比,不锈钢中的贫铬晶粒边界在阳极上更具活性。 (与Al-Mg固溶体相比,富含3相的晶界具有较低的OCP(开路电势)和点蚀电势。;提出了一种模拟IGC在多晶材料中扩散的新方法。该模型是第一个将几个因素耦合到一个颗粒模型中,该模型说明了它们相互作用和IGC发生的方式,它为引起IGC在两种合金中扩散的条件提供了新信息,并描述了与IGC相关的潜在潜力的新理论。由此,有助于实现合金耐腐蚀计算设计目标的方法,指导抑制现有合金中IGC的缓解策略以及旨在预测损伤和结构完整性的损伤预后。

著录项

  • 作者

    Jain, Swati.;

  • 作者单位

    University of Virginia.;

  • 授予单位 University of Virginia.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 409 p.
  • 总页数 409
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号