首页> 外文期刊>Chemometrics and Intelligent Laboratory Systems >The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis
【24h】

The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis

机译:中红外光谱法结合偏最小二乘回归和神经网络(PLS-NN)分析对土壤化学和物理性质的预测

获取原文
获取原文并翻译 | 示例
           

摘要

This study compares the performance of partial least-squares (PLS) regression analysis for the prediction of a wide range of soil chemical and physical properties from their mid-infrared (MIR) spectra with those from a combination of PLS regression and neural networks (NN). A combination of PLS and NN, referred to as PLS-NN, uses a relatively few PLS scores as inputs to the NN. This has the advantages of the robustness and qualitative and quantitative features of PLS and the non-linear capabilities of neural networks. In this study, the PLS-NN method outperformed the basic PLS regression for the prediction of some soil properties from MIR spectra of soils from throughout New South Wales, Australia. The coefficient of determination (R~(2)) and root-mean standard error of prediction (RMSEP) for total organic carbon (TOC) were improved from an R~(2) velence 0.87 and RMSEP velence 0.7 by PLS, to an R~(2) velence 0.94 and RMSEP velence 0.5 by PLS-NN. Predictions appeared to be most improved where PLS regression curvature was apparent or when the analytical value distributions were heavily skewed to low values with many negative predictions, e.g. for exchangeable-Al and Mg, TOC, CEC, P-sorption and moisture content. For other soil properties there appeared to be a significant improvement in the lower 25 percentile of analyte values but the prediction errors increased at high analyte values and no net improvement was achieved, or were only marginal for the full range of data. In cases where PLS failed to give a viable model, NN also could not derive a converging model. The use of PLS-NN over the usual PLS method for routine soil analytical applications must be questioned with regard to a tradeoff between some possible limited improvement versus the added computational complexity and additional software requirement for NN.
机译:这项研究比较了偏最小二乘(PLS)回归分析从中红外(MIR)光谱与结合PLS回归和神经网络(NN)预测广泛的土壤化学和物理特性的性能)。 PLS和NN的组合称为PLS-NN,使用相对较少的PLS分数作为NN的输入。这具有PLS的鲁棒性,定性和定量特征以及神经网络的非线性功能的优点。在这项研究中,PLS-NN方法在根据澳大利亚新南威尔士州的土壤MIR光谱预测某些土壤性质方面优于基本的PLS回归。总有机碳(TOC)的测定系数(R〜(2))和预测均方根标准误差(RMSEP)从PLS的R〜(2)平均值0.87和RMSEP平均值0.7提高到R PLS-NN的〜(2)速度0.94和RMSEP速度0.5。在PLS回归曲率明显的情况下或当分析值分布严重偏低到具有许多负面预测的低值时,例如,在某些情况下,预测似乎得到了最大的改进。用于可交换的铝和镁,TOC,CEC,P吸附和水分含量。对于其他土壤特性,较低的25%的分析物值似乎有显着改善,但是在较高的分析物值下,预测误差会增加,并且没有实现净改善,或者对于整个数据范围而言,这只是微不足道的。在PLS无法给出可行模型的情况下,NN也无法得出收敛模型。对于在常规土壤分析应用中使用PLS-NN而非常规PLS方法的问题,必须在一些可能的有限改进与增加的计算复杂性以及对NN的附加软件需求之间进行权衡方面受到质疑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号