首页> 外文期刊>Chinese science bulletin >Possible role of inositol phospholipid signal transduction system in Dunaliella salina under hypoosmotic shock
【24h】

Possible role of inositol phospholipid signal transduction system in Dunaliella salina under hypoosmotic shock

机译:低渗性休克条件下肌醇磷脂信号转导系统在盐藻中的可能作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

IN the course of plant life, many physiological and biochemical processes are controlled by extracellular signals (light, temperature, gravity, water, hormone, etc.). How the cells perceive these environmental signals, transduce them inwards and leadto alterations of intracellu-lar physiology has become a focus in life science these years. Research in this field was started earlier and further developed in animal cells. When specific receptors on the external surface of animal cells perceive an extracellular signal, specific phospholipase C (PLC) isozymes are activated, signaled by the cleavage of inositol phospholipids to release second messengers, i.e. inositol 1, 4,5-trisphosphate (IP_3) diacylglycerol (DAG). IP_3 could release Ca~(2+) from intra-cellular Ca~(2+) stores, and thus stimulate the activity of Ca~(2+)-CaM system or Ca~(2+)-dependent protein kinases. As DAG may activate protein kinase C (PKC), the activities of certain functional proteins are promoted. Since the discovery of inositolphospholipids in carrot plasma membrane by Boss and Massel (1985), people have characterized the existence of all the above signal transduction components (inositol phospholipids, protein kinases, PLC, IP_3, DAG, etc.) within photosynthetic organisms, and studied their biochemical characteristics, metabolism and responses to outside stimuli. The accumulative evidence shows that inositol phospholipid signal transduction system exists in plants in a form similar to that of the animal model. Dunaliella salina is a naked single-celled green alga which can grow under saline conditions of 0.5--5 mol/L NaCl and produce glycerol as its main osmotically active compound. It is halo-tolerant and very responsive to osmotic stimuli, so it is used as a model systemto study coupling mechanisms between stimulus and cell responses. Although the experiments done have indicated that inositol phospholipid signaling system in D. salina may participate in extracellular signal transduction, evidence on the role of the second messengers ( such as IP_3) in signal transduction and its coupling to physiological alterations is still lacking. Here, we show the relationship between the degradation of polyphosphoinositides and the concomitant elevation of IP_3 levels in D. salina cells during hypoosmotic shock. By using the G protein activator and PLC inhibitor, we preliminarily prove the stimulus-response coupling mechanism in D. salina, i.e. hypoosmotic shock --> G protein --> PLC-->IP_3 --> glycerol conversion.
机译:在植物生命过程中,许多生理和生化过程都受到细胞外信号(光,温度,重力,水,激素等)的控制。近年来,细胞如何感知这些环境信号,向内转导这些信号并导致细胞内生理发生改变,已成为生命科学领域的重点。该领域的研究较早开始,并在动物细胞中得到了进一步发展。当动物细胞外表面的特定受体感知到细胞外信号时,特定的磷脂酶C(PLC)同工酶被激活,通过肌醇磷脂的裂解发出信号以释放第二种信使,即肌醇1,4,5-三磷酸(IP_3)二酰基甘油(DAG)。 IP_3可以从细胞内Ca〜(2+)中释放Ca〜(2+),从而刺激Ca〜(2 +)-CaM系统或Ca〜(2+)依赖性蛋白激酶的活性。由于DAG可能激活蛋白激酶C(PKC),因此某些功能性蛋白的活性得到促进。自Boss和Massel(1985)在胡萝卜质膜中发现肌醇磷脂以来,人们就表征了光合生物中上述所有信号转导成分(肌醇磷脂,蛋白激酶,PLC,IP_3,DAG等)的存在,以及研究了它们的生化特性,代谢和对外界刺激的反应。累积的证据表明,肌醇磷脂信号转导系统以类似于动物模型的形式存在于植物中。杜氏盐藻是一种裸露的单细胞绿藻,可以在0.5--5 mol / L NaCl的盐条件下生长,并产生甘油作为其主要的渗透活性化合物。它是耐光晕的,并且对渗透刺激反应非常敏感,因此它被用作模型系统来研究刺激与细胞反应之间的耦合机制。尽管已完成的实验表明盐沼中的肌醇磷脂信号传导系统可能参与了细胞外信号转导,但仍缺乏第二信使(例如IP_3)在信号转导中的作用及其与生理变化的耦合的证据。在这里,我们显示了低渗性休克过程中,D。salina细胞中多磷酸肌醇的降解与IP_3水平的同时升高之间的关系。通过使用G蛋白激活剂和PLC抑制剂,我们初步证明了盐藻的刺激反应耦合机制,即低渗休克-> G蛋白-> PLC-> IP_3->甘油转化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号