...
首页> 外文期刊>Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear >Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach
【24h】

Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach

机译:刀具几何形状在纳米切削中的作用:分子动力学模拟方法

获取原文
获取原文并翻译 | 示例
           

摘要

To investigate the effect of tool geometry in nanometric cutting, molecular dynamics (MD)simulations of nanometric cutting were carried out with tools of different edge radii relative to depthof cut. Simulation studies were carried out by varying the tool edge radius, r (3.62 21.72 nm) anddepths of cut, d (0.362-2.172 nm) by maintaining the d/r ratio constant (0.1, 0.2, and 0.3). Variationsof the cutting and thrust forces, the force ratio, the specific energy, and the sub-surface deformationwith the tool geometry and depths of cut were investigated and found to have a significant influenceon them. The results were also found to be in reasonably good agreement with the experimental andsimulation results reported in the literature. Unlike in conventional cutting where the depth of cut issignificant compared to the edge radius (or, the edge radius is negligible), in nanometric cutting this isgenerally not the case due to small depths of cut and minimum possible edge radius that can beproduced on a single crystal diamond tool by the best manufacturing practice (20-70 nm). It alsoappears that the high negative rake angle and/or large edge radius (relative to the depth of cut) of thetool used in practice for finishing of advanced materials such as silicon wafers in nanometric cuttingprovides a high hydrostatic pressure underneath the tool required for the formation of a small plasticdeformation zone immediately beneath the tool instead of initiating brittle fracture. A material removalmechanism was proposed that would cover the range from conventional machining to grinding, toultraprecision machining, and finally to the indentation-sliding as a cognate transition for materialremoval operation. Indentation-sliding model appears to be more appropriate when consideringmachining brittle materials with tools of large edge radius relative to the depth of cut or large negativerake tools. Similarly, for grinding of ductile materials, the appropriate model would be using eithertools of large edge radii relative to the depth of cut or large negative rake tools.
机译:为了研究刀具几何形状在纳米切削中的影响,使用相对于切削深度的不同边缘半径的刀具进行了纳米切削的分子动力学(MD)模拟。通过保持d / r比率恒定(0.1、0.2和0.3)来改变刀具边缘半径r(3.62 21.72 nm)和切削深度d(0.362-2.172 nm)来进行仿真研究。研究了切削力和推力,力比,比能量和亚表面变形随刀具几何形状和切削深度的变化,并发现对切削力和推力的影响很大。还发现结果与文献中报道的实验和模拟结果相当合理地吻合。与常规切割不同,常规切割的深度与边缘半径相比(或边缘半径可以忽略),而在纳米切割中,通常情况下并非如此,这是由于较小的切割深度和可以在单个表面上产生的最小可能的边缘半径晶体金刚石工具由最佳制造实践(20-70 nm)组成。还似乎表明,纳米加工中实际用于精加工先进材料(如硅片)的工具的高负前角和/或较大的刃口半径(相对于切割深度)在成型所需的工具下方提供了较高的静水压力。直接在工具下方形成一个小的塑性变形区,而不是引发脆性断裂。提出了一种材料去除机制,该机制将涵盖从常规加工到磨削,超精密切削加工,最后到压痕滑动的范围,作为材料去除操作的同类过渡。当考虑使用相对于切削深度或较大的负前角刀具的较大半径的刀具来加工脆性材料时,压痕-滑动模型似乎更合适。同样,对于易延展材料的磨削,合适的模型将使用相对于切削深度较大的刃口半径的刀具或较大的负前角刀具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号