首页> 外文期刊>Water Science and Technology >Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts
【24h】

Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts

机译:使用核/壳纳米催化剂在可见光下从水中光催化制氢

获取原文
获取原文并翻译 | 示例
           

摘要

A microemulsion technique was employed to synthesize nano-sized photocatalysts with a core (CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm, and the mean size of the catalyst clusters in water was about 100 nm. The band gaps of the catalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H-2 generation showed that the catalysts (CdS)(x)/(ZnS)(1-x) with x ranging from 0.1 to 1 were able to produce hydrogen from water photolysis under visible light. The catalyst with x = 0.9 had the highest rate of hydrogen production. The catalyst loading density also influenced the photo-hydrogen production rate, and the best catalyst concentration in water was 1g L-1. The stability of the nano-catalysts in terms of size, morphology and activity was satisfactory during an extended test period for a specific hydrogen production rate of 2.38 mmolg(-1) n(-1) and a quantum yield of 16.1% under visible light (165W Xe lamp, lambda > 420 nm). The results demonstrate that the (CdS)/(ZnS) core/shell nano-particles are a novel photo-catalyst for renewable hydrogen generation from water under visible light. This is attributable to the large band-gap ZnS shell that separates the electron/hole pairs generated by the CdS core and hence reduces their recombinations.
机译:微乳液技术被用来合成具有核(CdS)/壳(ZnS)结构的纳米级光催化剂。光催化剂的初级粒子约为10 nm,水中的催化剂簇的平均大小约为100 nm。催化剂的带隙范围为2.25至2.46 eV。 H-2生成光催化的实验表明,x在0.1到1之间的催化剂(CdS)(x)/(ZnS)(1-x)能够在可见光下通过水的光解产生氢。 x = 0.9的催化剂具有最高的氢气产生速率。催化剂的负载密度也影响了光氢的产生速率,水中的最佳催化剂浓度为1g L-1。纳米催化剂在尺寸,形貌和活性方面的稳定性在延长的测试期间内令人满意,在可见光下的比氢产生率为2.38 mmolg(-1)n(-1),量子产率为16.1%。 (165W Xe灯,λ> 420 nm)。结果表明,(CdS)/(ZnS)核/壳纳米粒子是一种新型的光催化剂,用于在可见光下从水中产生可再生氢。这归因于大的带隙ZnS壳层,该壳层将CdS核生成的电子/空穴对分开,从而减少了它们的复合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号