首页> 外文期刊>Water Science and Technology >Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts
【24h】

Photocatalytic hydrogen generation from water under visible light using core/shell nano-catalysts

机译:使用核/壳纳米催化剂在可见光下从水中光催化制氢

获取原文
获取原文并翻译 | 示例
       

摘要

A microemulsion technique was employed to synthesize nano-sized photocatalysts with a coren(CdS)/shell (ZnS) structure. The primary particles of the photocatalysts were around 10 nm,nand the mean size of the catalyst clusters in water was about 100 nm. The band gaps of thencatalysts ranged from 2.25 to 2.46 eV. The experiments of photocatalytic H2 generation showednthat the catalysts (CdS)x/(ZnS)12x with x ranging from 0.1 to 1 were able to produce hydrogennfrom water photolysis under visible light. The catalyst with x ?0.9 had the highest rate ofnhydrogen production. The catalyst loading density also influenced the photo-hydrogen productionnrate, and the best catalyst concentration in water was 1 g L21. The stability of the nano-catalystsnin terms of size, morphology and activity was satisfactory during an extended test period for anspecific hydrogen production rate of 2.38mmolg21 L21 h21 and a quantum yield of 16.1% undernvisible light (165W Xe lamp, l . 420 nm). The results demonstrate that the (CdS)/(ZnS) core/shellnnano-particles are a novel photo-catalyst for renewable hydrogen generation from water undernvisible light. This is attributable to the large band-gap ZnS shell that separates the electron/holenpairs generated by the CdS core and hence reduces their recombinations.
机译:采用微乳液技术合成具有核(CdS)/壳(ZnS)结构的纳米级光催化剂。光催化剂的初级粒子约为10 nm,在水中的催化剂簇的平均大小约为100 nm。然后催化剂的带隙范围为2.25至2.46 eV。 H 2生成的光催化实验表明,x在0.1至1范围内的(CdS)x /(ZnS)12x催化剂能够在可见光下由水的光解产生氢。 x≤0.9的催化剂具有最高的氢产生速率。催化剂的负载密度也影响光氢的产生率,水中的最佳催化剂浓度为1 g L21。纳米催化剂在尺寸,形态和活性方面的稳定性在延长的测试期间内令人满意,在不可见光(165W Xe灯,波长为420 nm)下的比氢产生率为2.38mmolg21 L21 h21,量子产率为16.1%。 。结果表明,(CdS)/(ZnS)核/壳聚糖粒子是一种新型的光催化剂,用于在可见光下从水中产生可再生氢。这归因于宽带隙的ZnS壳层,该壳层将CdS核生成的电子/空穴对分开,从而减少了它们的重组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号