首页> 外文期刊>Water Science and Technology >Combined influence of temperature and process loading on the effluent concentration of biological treatment
【24h】

Combined influence of temperature and process loading on the effluent concentration of biological treatment

机译:温度和工艺负荷对生物处理废水浓度的综合影响

获取原文
获取原文并翻译 | 示例
           

摘要

The influence of temperature on biological wastewater treatment is generally quantified by an exponential model for maximum growth (mu(max)) of bacteria or maximum conversion (v(max)) for specific substrates. This "maximum" influence is also applied for reactor design, although recent experiences with nitrogen removal show little temperature effect on the effluent concentrations. The new parameter "process temperature influence" (dc(e)/dT) on the effluent concentration is defined and quantified including the "kinetic temperature influence" plus process loading and reactor configuration. These interrelations are modelled and presented graphically. Also, dc(e)/dT is expressed as "apparent temperature coefficient" theta(a) for easy comparison with the kinetic coefficient. theta(a) depends strongly on the degree of process loading and never reaches the magnitude of the kinetic coefficient. Especially at lower loadings this coefficient is almost equal to one proving very little temperature effect dc(e)/dT. The derived model is verified by computer simulation. Hence, effluent concentrations of biological treatment are much less sensitive to temperature changes than quantified by the kinetic temperature coefficients theta. This significantly reduced temperature influence should be incorporated into the design of reactor volumes to ensure a realistic design (procedure) and reduce unnecessary investment cost. The presented model is a valuable tool in this respect. (C) 1998 IAWQ. Published by Elsevier Science Ltd. All rights reserved. [References: 8]
机译:温度对生物废水处理的影响通常通过指数模型来量化,该模型用于细菌的最大生长(mu(max))或特定底物的最大转化率(v(max))。尽管最近的脱氮经验表明温度对流出物浓度影响很小,但这种“最大”影响也适用于反应器设计。定义和量化对废水浓度的新参数“过程温度影响”(dc(e)/ dT),包括“动力学温度影响”以及过程负载和反应器配置。这些相互关系被建模并以图形方式呈现。同样,dc(e)/ dT表示为“表观温度系数” theta(a),以便与动力学系数轻松比较。 theta(a)很大程度上取决于过程负荷的程度,永远不会达到动力学系数的大小。特别是在较低的负载下,该系数几乎等于一个温度效应dc(e)/ dT很小的系数。通过计算机仿真验证了导出的模型。因此,生物处理的废水浓度对温度变化的敏感度要比由动力学温度系数θ量化的敏感度低得多。应将这种明显降低的温度影响并入反应器容积的设计中,以确保切合实际的设计(过程)并减少不必要的投资成本。在这方面,提出的模型是一种有价值的工具。 (C)1998 IAWQ。由Elsevier Science Ltd.出版。保留所有权利。 [参考:8]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号