首页> 外文期刊>Water Science and Technology >Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory
【24h】

Predicting membrane flux decline from complex mixtures using flow-field flow fractionation measurements and semi-empirical theory

机译:使用流场分流测量和半经验理论预测复杂混合物的膜通量下降

获取原文
获取原文并翻译 | 示例
           

摘要

Flow-Field Flow Fractionation (FI-FFF) is an idealization of the cross flow membrane filtration process in that, (1) the filtration flux and crossflow velocity are constant from beginning to end of the device, (2) the process is a relatively well-defined laminar-flow hydrodynamic condition, and (3) the solutes are introduced as a pulse-input that spreads due to interactions with each other and the membrane in the dilute-solution limit. We have investigated the potential for relating FI-FFF measurements to membrane fouling. An advection-dispersion transport model was used to provide 'ideal' (defined as spherical, non-interacting solutes) solute residence time distributions (RTDs) for comparison with 'real' RTDs obtained experimentally at different cross-field velocities and solution ionic strength. An RTD moment analysis based on a particle diameter probability density function was used to extract "effective" characteristic properties, rather than uniquely defined characteristics, of the standard solute mixture. A semi-empirical unsteady-state, flux decline model was developed that uses solute property parameters. Three modes of flux decline are included: (1) concentration polarization, (2) cake buildup, and (3) adsorption on/in pores, We have used this model to test the hypothesis-that an analysis of a residence time distribution using FI-FFF can describe 'effective' solute properties or indices that can be related to membrane flux decline in crossflow membrane filtration. Constant flux filtration studies included the changes of transport hydrodynamics (solvent flux to solute back diffusion (J/k) ratios), solution ionic strength, and feed water composition for filtration using a regenerated cellulose ultrafiltration membrane. Tests of the modeling hypothesis were compared with experimental results from the filtration measurements using several correction parameters based on the mean and variance of the solute RTDs. The corrections used to modify the boundary layer mass transfer coefficient and the specific resistance of cake or adsorption layers demonstrated that RTD analysis is potentially useful technique to describe colloid properties but requires improvements.
机译:流场流分馏(FI-FFF)是错流膜过滤过程的理想选择,因为(1)过滤通量和错流速度从设备的开始到结束都是恒定的,(2)该过程相对(3)将溶质作为脉冲输入引入,该脉冲输入由于彼此和膜在稀溶液极限中的相互作用而扩散。我们已经研究了将FI-FFF测量值与膜污染相关的潜力。使用对流扩散传输模型来提供“理想的”(定义为球形,非相互作用的溶质)溶质停留时间分布(RTD),以与在不同的交叉场速度和溶液离子强度下通过实验获得的“实际” RTD进行比较。基于粒径概率密度函数的RTD矩分析用于提取标准溶质混合物的“有效”特性,而不是唯一定义的特性。利用溶质特性参数,建立了一个半经验的非稳态通量下降模型。通量下降的三种模式包括:(1)浓度极化,(2)滤饼堆积和(3)在孔上/孔中的吸附,我们已经使用该模型来检验假设-使用FI分析滞留时间分布-FFF可以描述“有效”溶质性质或指数,这些性质或指数可能与错流膜过滤中的膜通量下降有关。恒定通量过滤研究包括运输流体动力学(溶剂通量与溶质向后扩散(J / k)之比),溶液离子强度和使用再生纤维素超滤膜进行过滤的给水组成的变化。使用基于溶质RTD平均值和方差的几个校正参数,将建模假设的检验与过滤测量的实验结果进行了比较。用于修改边界层传质系数和滤饼或吸附层电阻率的校正表明,RTD分析是描述胶体性质的潜在有用技术,但需要改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号