...
首页> 外文期刊>Weather and forecasting >Range-correcting Azimuthal shear in doppler radar data
【24h】

Range-correcting Azimuthal shear in doppler radar data

机译:多普勒雷达数据中的距离校正方位角剪切

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The current tornado detection algorithm (TDA) used by the National Weather Service produces a large number of false detections, primarily because it calculates azimuthal shear in a manner that is adversely impacted by noisy velocity data and range-degraded velocity signatures. Coincident with the advent of new radarderived products and ongoing research involving new weather radar systems, the National Severe Storms Laboratory is developing an improved TDA. A primary component of this algorithm is the local, linear least squares derivatives (LLSD) azimuthal shear field. The LLSDmethod incorporates rotational derivatives of the velocity field and is affected less strongly by noisy velocity data in comparison with traditional "peak to peak"azimuthal shear calculations. LLSD shear is generally less range dependent than peak-to-peak shear, although some range dependency is unavoidable. The relationship between range and the LLSD shear values of simulated circulations was examined to develop a range correction for LLSD shear. A linear regression and artificial neural networks (ANNs) were investigated as range-correction models. Both methods were used to produce fits for the simulated shear data, although theANNexcelled as it could capture the nonlinear nature of the data. The range-correctionmethods were applied to real radar data fromtornadic and nontornadic events to measure the capacity of the corrected shear to discriminate between tornadic and nontornadic circulations. The findings presented herein suggest that bothmethods increased shear values during tornadic periods by nearly an order of magnitude, facilitating differentiation between tornadic and nontornadic scans in tornadic events.
机译:国家气象局使用的当前龙卷风检测算法(TDA)会产生大量错误检测结果,这主要是因为它以受噪声速度数据和范围降低的速度特征不利影响的方式计算方位角剪切。与新的雷达衍生产品的出现以及涉及新天气雷达系统的正在进行的研究相吻合,美国国家强风暴实验室正在开发一种改进的TDA。该算法的主要组成部分是局部线性最小二乘导数(LLSD)方位角剪切场。 LLSD方法结合了速度场的旋转导数,并且与传统的“峰到峰”方位角剪切计算相比,受噪声速度数据的影响较小。 LLSD剪切通常比峰峰值剪切更不依赖于范围,尽管某些范围相关是不可避免的。检查范围和模拟循环的LLSD剪切值之间的关系,以开发LLSD剪切的范围校正。研究了线性回归和人工神经网络(ANN)作为距离校正模型。两种方法都可用于模拟剪切数据的拟合,尽管人工神经网络具有优越性,因为它可以捕获数据的非线性性质。将距离校正方法应用于来自雷暴事件和非雷暴事件的真实雷达数据,以测量修正后的剪切力区分雷暴和非暴风环流的能力。本文提出的发现表明,这两种方法都可以在龙卷风期间将剪切值增加近一个数量级,从而促进了龙卷风事件中龙卷风和非龙卷风扫描之间的区别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号