首页> 外文期刊>Carbohydrate Polymers: Scientific and Technological Aspects of Industrially Important Polysaccharides >Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties
【24h】

Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties

机译:多尺度纤维素基新型生物气凝胶复合材料,具有热超隔热和可调节的机械性能

获取原文
获取原文并翻译 | 示例
       

摘要

Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28 mW m(-1) K-1 (BCF aerogel) to 23 mW m(-1) K-1 (bio-composite aerogel), which is below the air conductivity (25 mW m(-1) K-1). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. (C) 2015 Elsevier Ltd. All rights reserved.
机译:通过冷冻干燥技术制备了基于漂白纤维素纤维(BCF)的生物复合气凝胶和具有各种形态和物理化学特征的纤维素纳米颗粒。将获得的各种复合气凝胶与用作参考的BCF气凝胶进行比较。通过SEM和AFM观察到材料形态的严重变化,这是由于纤维素纳米颗粒性质如长径比,结晶指数和表面电荷密度的变化所致。 BCF纤维形成3D网络,与纯的BCF气凝胶相比,它们被纤维素纳米颗粒薄膜包围,可显着减小孔的大小。 BET分析证实了具有纳米尺寸孔的新组织结构的出现。结果,观察到热导率从28 mW m(-1)K-1(BCF气凝胶)降低到23 mW m(-1)K-1(生物复合气凝胶),低于空气。电导率(25 mW m(-1)K-1)。对于基于具有低结晶指数和高表面电荷(NFC-2h)的纤维素纳米颗粒的气凝胶,复合材料绝缘性能的这种改善更为明显。其绝热性能的显着改善使生物复合气凝胶进入了超绝热材料家族。纤维素纳米颗粒的特性也影响生物复合气凝胶的机械性能。通过自组织获得在压缩下的机械性能的显着改善,从而在生物复合气凝胶中产生了纤维素纳米颗粒的多尺度结构。在这种情况下,机械性能更多地取决于复合气凝胶的形态,而不是纤维素纳米颗粒的固有特性。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号