首页> 外文期刊>Tribology International >Approximate analytical solution to Reynolds equation for finite length journal bearings
【24h】

Approximate analytical solution to Reynolds equation for finite length journal bearings

机译:有限长度轴颈轴承雷诺方程的近似解析解

获取原文
获取原文并翻译 | 示例
           

摘要

The understanding of the behavior of hydrodynamic bearings requires the analysis of the fluid film between two solid surfaces in relative motion. The differential equation that governs the movement of this fluid, called the Reynolds equation, arises from the integration over the film thickness of the continuity equation, previously combined with the Navier-Stokes equation. An order of magnitude analysis, which is based on the relative value of the dimensions of the bearing, produces two dimensionless numbers that govern the behavior of the system: the square of the aspect ratio, length over diameter (L/D)~2, and the eccentricity ratio (η). An analytical solution of the Reynolds equation can only be obtained for particular situations as, for example, the isothermal flow of Newtonian fluids and values of L/D → 0 or L/D → ∞. For other conditions, the equation must be solved numerically. The present work proposes an analytical approximate solution of the Reynolds equation for isothermal finite length journal bearings by means of the regular perturbation method. (L/D)~2 is used as the perturbation parameter. The novelty of the method lays in the treatment of the Ocvirk number as an expansible parameter. The zero-order solution of the Reynolds equation (obtained for L/D→0), which matches the Ocvirk solution, may be used to describe the behavior of finite length journal bearings, up to L/D ~ 1/8-1/4, and relatively small eccentricities. The first-order solution obtained with the proposed method gives an analytical tool that extends the description of pressure and shear-stress fields up to L/D ~ 1/2 and η ~ 1/2 (or combinations of larger eccentricities with smaller aspect ratios, or vice versa). Moreover, the friction force and load-carrying capacity are accurately described by the proposed method up to L/D ~ 1 and η very near to 1.
机译:要了解流体动力轴承的性能,就需要对两个相对运动的固体表面之间的流体膜进行分析。控制这种流体运动的微分方程称为雷诺方程,它是由连续性方程在膜厚上的积分产生的,该积分先前已与Navier-Stokes方程组合。基于轴承尺寸的相对值的数量级分析会产生两个无量纲的数字来控制系统的行为:长宽比的平方,长径比(L / D)〜2,偏心率(η)。仅在特定情况下才能获得雷诺方程的解析解,例如牛顿流体的等温流和L / D→0或L / D→∞的值。对于其他条件,必须对方程进行数值求解。本文通过规则摄动法,为等温有限长度轴颈轴承提出了雷诺方程的解析近似解。 (L / D)〜2用作摄动参数。该方法的新颖之处在于将Ocvirk数视为可扩展参数。雷诺方程的零阶解(从L / D→0获得)与Ocvirk解匹配,可用于描述有限长度轴颈轴承的行为,直至L / D〜1 / 8-1 / 4,偏心率比较小。所提方法获得的一阶解提供了一种分析工具,可将对压力和切应力场的描述扩展到L / D〜1/2和η〜1/2(或较大的偏心率和较小的纵横比的组合) , 或相反亦然)。此外,通过所提出的方法可以精确地描述摩擦力和承载能力,直至L / D〜1且η非常接近1。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号