首页> 外文期刊>Trends in Cardiovascular Medicine >Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase.
【24h】

Bioactivation of nitroglycerin by the mitochondrial aldehyde dehydrogenase.

机译:线粒体醛脱氢酶对硝酸甘油的生物活化作用。

获取原文
获取原文并翻译 | 示例
           

摘要

The mitochondrial aldehyde dehydrogenase (ALDH2, mtALDH) was recently found to catalyze the reduction of nitroglycerin (glyceryl trinitrate [GTN]) to generate nitrite and 1,2-glyceryl dinitrate. The nitrite generated within the mitochondria is metabolized further to generate nitric oxide (NO)-based bioactivity, by reduction to NO and/or by conversion to S-nitrosothiol, as revealed by a series of biochemical, pharmacologic, and genetic studies. These studies also demonstrated that mechanism-based inactivation of mtALDH is involved in the development of GTN tolerance. In mice in which the mtALDH gene was selectively deleted (mtALDH(-/-)), vascular responsiveness to low but not to high GTN concentrations was eliminated, indicating the existence of an additional mechanism of GTN biotransformation ("high K(m)" pathway). In addition, bioactivation of isosorbide dinitrate/mononitrate vasodilators is independent of mtALDH. Induction of GTN tolerance in vitro in aortae from normal mice selectively affected responsiveness to low doses of GTN, and the remaining responsiveness to high doses of GTN in mtALDH(-/-) vasculature did not exhibit tolerance. These findings suggest strongly that the high K(m) pathway is not involved in the development of GTN tolerance that is mechanism-based. Notably, recent studies indicate that individuals of East Asian origin with the common E487K mutation of mtALDH, which results in decreased mtALDH activity, are significantly less responsive to GTN. These observations in toto provide strong support for the conclusion that mtALDH provides the necessary and sufficient enzymatic mechanism for biotransformation of clinically relevant concentrations of GTN to NO-based vasoactivity and indicate in addition that inactivation of mtALDH plays a significant role in the development of mechanism-based GTN tolerance.
机译:最近发现线粒体醛脱氢酶(ALDH2,mtALDH)催化还原硝酸甘油(三硝酸甘油酯[GTN]),生成亚硝酸盐和1,2-甘油二硝酸盐。一系列生化,药理和遗传学研究表明,线粒体内产生的亚硝酸盐通过还原为NO和/或转化为S-亚硝基硫醇,进一步代谢以产生基于一氧化氮(NO)的生物活性。这些研究还表明,mtALDH的基于机制的失活与GTN耐受性的发展有关。在其中mtALDH基因被选择性删除的小鼠(mtALDH(-/-))中,血管对低GTN浓度而不是高GTN浓度的反应消失了,这表明存在GTN生物转化的其他机制(“高K(m)”途径)。另外,异山梨醇二硝酸盐/单硝酸盐血管扩张剂的生物活化与mtALDH无关。在正常小鼠的主动脉中,体外对GTN耐受性的诱导选择性地影响了对低剂量GTN的反应性,而在mtALDH(-/-)脉管系统中对高剂量GTN的剩余反应性没有表现出耐受性。这些发现强烈表明,高K(m)途径不参与基于机制的GTN耐受性的发展。值得注意的是,最近的研究表明,具有mtALDH常见E487K突变(导致mtALDH活性降低)的东亚血统的个体对GTN的反应明显较弱。这些观察结果为mtALDH为临床相关浓度的GTN生物转化为基于NO的血管活性提供了必要和充分的酶促机制的结论提供了有力的支持,并另外表明mtALDH的失活在机制发展中起着重要作用-基于GTN的公差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号