...
首页> 外文期刊>Surface & Coatings Technology >Entropy control and surface analysis of energy storage systems for advanced vehicles
【24h】

Entropy control and surface analysis of energy storage systems for advanced vehicles

机译:先进车辆储能系统的熵控制和表面分析

获取原文
获取原文并翻译 | 示例
           

摘要

The entropy control to maximize energy efficiency should be carried out by the development and introduction of functional materials in the advanced batteries. This procedure can be investigated by the calculations of thermal generation derived by each parameter. These approaches were done for the advanced Li-ion batteries for hybrid electric vehicle and electric vehicle applications. The thermal generation of Q(p) that is exothermic during both charge and discharge processes corresponds to the energy loss due to a polarization, and the thermal generation of Q(j) due to an electrical resistance of batteries will be produced. The thermal generation of Q(r) implies battery reactions. As a result, the total thermal generation: Q(t) will be expressed as below. Q(t) = Q(r) + Q(p) + Q(j) = nFT(deltaE(e)/deltaT) + Q(p) + Q(j). Another topic is surface and bulk controls of electrode materials in any type of battery. A battery life will be determined by several factors like material designing, battery temperature or charge-discharge stress etc. Particularly, the stress of high temperature over 40 degreesC accelerated the degrading velocity of Li-ion batteries. Electron spin resonance data indicated the existence of Mn(II) instead of the original Mn(III) of a positive electrode in Li-ion batteries. This fact will support the decomposition of Mn(III) in LiMn2O4 to Mn(II) and Mn(IV) by the action of electrolyte. X-ray photoelectron spectroscopy data for the surface profiles on the negative electrode materials showed the existence of ether and phosphate compound on the surface of graphite carbon. It is thought that the decomposition of LiPF6 in the electrolyte took place. (C) 2003 Elsevier Science B.V. All rights reserved. [References: 5]
机译:为了使能量效率最大化,应通过开发和引入功能性电池中的功能材料来进行熵控制。可以通过计算每个参数产生的热量来研究此过程。这些方法是针对混合动力电动汽车和电动汽车应用的高级锂离子电池完成的。在充电和放电过程中都放热的Q(p)的发热对应于由于极化引起的能量损失,并且将产生由于电池的电阻引起的Q(j)的发热。 Q(r)的热产生暗示电池反应。结果,总热产生:Q(t)将表示如下。 Q(t)= Q(r)+ Q(p)+ Q(j)= nFT(deltaE(e)/ deltaT)+ Q(p)+ Q(j)。另一个主题是任何类型电池中电极材料的表面和体积控制。电池寿命将由多种因素决定,例如材料设计,电池温度或充放电应力等。特别是40摄氏度以上的高温应力会加速锂离子电池的降解速度。电子自旋共振数据表明,锂离子电池中存在锰(II)而不是正极的原始锰(III)。这一事实将支持LiMn2O4中的Mn(III)通过电解质的作用分解为Mn(II)和Mn(IV)。负极材料表面轮廓的X射线光电子能谱数据表明,石墨碳表面上存在醚和磷酸盐化合物。认为在电解质中发生了LiPF 6的分解。 (C)2003 Elsevier Science B.V.保留所有权利。 [参考:5]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号