首页> 外文期刊>Transactions of The Institution of Chemical Engineers. Process Safety and Environmental Protection, Part B >Nonlinear distribution characteristics of flame regions from methane-air explosions in coal tunnels
【24h】

Nonlinear distribution characteristics of flame regions from methane-air explosions in coal tunnels

机译:煤巷瓦斯爆炸爆炸火焰区域的非线性分布特征

获取原文
获取原文并翻译 | 示例
           

摘要

High temperature flame fronts generated in methane-air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane-air explosion processes for various initial premixed methane-air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane-air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane-air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane-air flame greatly exceeds the initial premixed methane-air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane-air region. The length of the initial premixed methane-air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents.
机译:甲烷-空气爆炸产生的高温火焰锋是地下煤矿的主要危害之一。但是,很少研究这种爆炸中火焰区域的分布规律以及影响这种爆炸的因素。在这项工作中,使用商用软件包AutoReaGas(适用于气体爆炸和爆炸问题的流体动力学有限体积计算代码),对各种初始混合甲烷-空气进行一系列甲烷-空气爆炸过程的数值模拟。大型煤矿巷道的区域和横截面积。根据模拟结果和相关实验,分析了火焰在初始预混合甲烷-空气区域以外传播的机理以及影响火焰区域的主要因素。前体冲击波和湍流扰乱了最初未燃烧的甲烷-空气混合物以及火焰前的纯净空气。随后,纯净空气和未燃烧的混合物沿轴向向后移动并部分混合。含甲烷区域的扩大导致甲烷-空气火焰的范围大大超过了初始的预混合甲烷-空气区域。超出初始区域的火焰速度非零,但比原始的预混合甲烷-空气区域的火焰速度低得多。初始预混合甲烷-空气区域的长度对火焰区域的大小有很大的影响,后者随着前者的增加呈指数增长。对于实际的煤隧道,横截面隧道面积并不是火焰区域的重要影响因素。这些结论提供了一个理论框架,可在其中分析事故原因并有效减轻重复发生类似事故造成的损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号