首页> 外文期刊>Biomechanics and modeling in mechanobiology >Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry
【24h】

Modeling individual-specific human optic nerve head biomechanics. Part I: IOP-induced deformations and influence of geometry

机译:模拟特定于个人的人类视神经乳头的生物力学。第一部分:IOP引起的变形和几何形状的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Glaucoma, the second most common cause of blindness worldwide, is an ocular disease characterized by progressive loss of retinal ganglion cell (RGC) axons. Biomechanical factors are thought to play a central role in RGC loss, but the specific mechanism underlying this disease remains unknown. Our goal was to characterize the biomechanical environment in the optic nerve head (ONH)-the region where RGC damage occurs-in human eyes. Post mortem human eyes were imaged, fixed at either 5 or 50 mmHg pressure and processed histologically to acquire serial sections through the ONH. Three-dimensional models of the ONH region were reconstructed from these sections and embedded in a generic scleral shell to create a model of an entire eye. We used finite element simulations to quantify the effects of an acute change in intraocular pressure from 5 to 50 mmHg on the ONH biomechanical environment. Computed strains varied substantially within the ONH, with the pre-laminar neural tissue and the lamina cribrosa showing the greatest strains. The mode of strain having the largest magnitude was third principal strain (compression), reaching 12-15% in both the lamina cribrosa and the pre-laminar neural tissue. Shear strains were also substantial. The distribution of strains in all ONH tissues was remarkably similar between eyes. Inter-individual variations in ONH geometry (anatomy) have only modest effects on ONH biomechanics, and may not explain inter-individual susceptibility to elevated intraocular pressure. Consistent with previous results using generic ONH models, the displacements of the vitreo-retinal interface and the anterior surface of the lamina cribrosa can differ substantially, suggesting that currently available optical imaging methods do not provide information of the acute deformations within ONH tissues. Predicted strains within ONH tissues are potentially biologically significant and support the hypothesis that biomechanical factors contribute to the initial insult that leads to RGC loss in glaucoma.
机译:青光眼是全世界第二大最常见的失明原因,是一种以视网膜神经节细胞(RGC)轴突逐渐丧失为特征的眼病。人们认为,生物力学因素在RGC丧失中起着核心作用,但是该疾病的具体机制仍不清楚。我们的目标是表征人眼中视神经乳头(ONH)发生RGC损伤的区域的生物力学环境。对尸检后的人眼成像,固定在5或50 mmHg的压力下,并进行组织学处理,以通过ONH获得连续切片。从这些部分重建ONH区域的三维模型,并将其嵌入通用巩膜壳中,以创建整个眼睛的模型。我们使用有限元模拟来量化眼压从5到50 mmHg的急性变化对ONH生物力学环境的影响。在ONH内,计算出的菌株差异很大,层前神经组织和筛状薄板显示出最大的菌株。具有最大幅度的应变模式是第三主应变(压缩),在筛板和板前神经组织中都达到12-15%。剪切应变也很大。眼睛之间所有ONH组织中的应变分布非常相似。个体间ONH几何形状(解剖结构)的变化仅对ONH生物力学产生适度的影响,可能无法解释个体间对眼内压升高的敏感性。与以前使用通用ONH模型得出的结果一致,玻璃体-视网膜界面和筛板的前表面的位移可能有很大差异,这表明当前可用的光学成像方法无法提供ONH组织内急性变形的信息。 ONH组织中的预测菌株可能具有潜在的生物学意义,并支持生物力学因素促成导致青光眼RGC丧失的初始损伤的假说。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号