首页> 外文期刊>Chemical Physics: A Journal Devoted to Experimental and Theoretical Research Involving Problems of Both a Chemical and Physical Nature >Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods
【24h】

Biorthogonal moment expansions in coupled-cluster theory: Review of key concepts and merging the renormalized and active-space coupled-cluster methods

机译:耦合簇理论中的双正交矩展开:关键概念的回顾和合并重归一化与活动空间耦合簇方法

获取原文
获取原文并翻译 | 示例
           

摘要

After reviewing recent progress in the area of the development of coupled-cluster (CC) methods for quasi-degenerate electronic states that are characterized by stronger non-dynamical correlation effects, including new generations of single- and multi-reference approaches that can handle bond breaking and excited states dominated by many-electron transitions, and after discussing the key elements of the left-eigenstate completely renormalized (CR) CC and equation-of-motion (EOM) CC methods, and the underlying biorthogonal method of moments of CC (MMCC) equations [P. Piecuch, M. W?och, J. Chem. Phys. 123 (2005) 224105; P. Piecuch, M. W?och, J.R. Gour, A. Kinal, Chem. Phys. Lett. 418 (2006) 467; M. W?och, M.D. Lodriguito, P. Piecuch, J.R. Gour, Mol. Phys. 104 (2006) 2149], it is argued that it is beneficial to merge the CR-CC/EOMCC and active-space CC/EOMCC [P. Piecuch, Mol. Phys. 108 (2010) 2987, and references therein] theories into a single formalism. In order to accomplish this goal, the biorthogonal MMCC theory, which provides compact many-body expansions for the differences between the full configuration interaction and CC or, in the case of excited states, EOMCC energies, obtained using conventional truncation schemes in the cluster operator T and excitation operator R _μ, is generalized, so that one can correct the CC/EOMCC energies obtained with arbitrary truncations in T and R _μ for the selected many-electron correlation effects of interest. The resulting moment expansions, defining the new, Flexible MMCC (Flex-MMCC) formalism, and the ensuing CC(P; Q) hierarchy, proposed in the present work, enable one to correct energies obtained in the active-space CC and EOMCC calculations, in which one selects higher many-body components of T and R _μ via active orbitals and which recover much of the relevant non-dynamical and some dynamical electron correlation effects in applications involving potential energy surfaces (PESs) along bond breaking coordinates, for the effects of higher-order, primarily dynamical, correlations missing in the active-space CC/EOMCC considerations. The Flex-MMCC corrections to the active-space CC/EOMCC energies are mathematically similar to the non-iterative energy corrections defining the existing left-eigenstate CR-CC and CR-EOMCC methods, such as CR-CC(2, 3) and CR-EOMCC(2, 3). The potential advantages of the Flex-MMCC and CC(P; Q) formalisms are illustrated by describing the initial implementation and numerical tests of the novel CC hybrid scheme, abbreviated as CC(t; 3), in which one corrects the results of the CC calculations with singles, doubles, and active-space triples, termed CCSDt, for the remaining effects due to connected triple excitations that are missing in the CCSDt considerations, but are present in the MMCC-based CR-CC(2, 3) approach. By examining bond breaking in the HF, F _2, and F2+ molecules, it is demonstrated that the CC(t; 3) method improves the CCSDt and CR-CC(2, 3) results, providing PESs that agree with those obtained with the full CC theory with singles, doubles, and triples (CCSDT) to within small fractions of a millihartree, at the fraction of the computer costs of the CCSDT calculations. Different strategies for defining active-space triples within the CC(t; 3) scheme and the underlying CCSDt method are discussed. When limited to the ground-state problem, the CC(t; 3) approach can be regarded as an improved and rigorously derived extension of the recently proposed CCSD(T)-h method [J. Shen, E. Xu, Z. Kou, S. Li, J. Chem. Phys. 132 (2010) 114115], in which triples corrections of the CCSD(T) type are replaced by their more robust CR-CC(2, 3)-style analogs.
机译:在回顾了在以弱简并电子状态为特征的准简并电子状态的耦合簇(CC)方法开发领域的最新进展之后,包括新一代可以处理键合的单参考和多参考方法断裂态和激发态由多电子跃迁控制,讨论了左本征态完全重归一化(CR)CC和运动方程(EOM)CC方法的关键要素,以及CC矩的基本双正交方法( MMCC)方程[P. Piecuch,M.W?och,J.Chem。物理123(2005)224105; P. Piecuch,M。W?och,J.R。Gour,A。Kinal,Chem。物理来吧418(2006)467; M. W?och,M.D。Lodriguito,P.Piecuch,J.R。Gour,Mol。物理104(2006)2149],有人认为合并CR-CC / EOMCC和活动空间CC / EOMCC是有益的[P.皮库奇,莫尔。物理》,第108卷(2010)2987,及其中的参考]将这些理论合并为一个形式主义。为了实现这一目标,采用了双正交MMCC理论,该理论为紧凑构型的多体展开提供了完整的构型相互作用和CC之间的差异,或者在激发态的情况下,通过使用簇运算符中的常规截断方案获得了EOMCC能量对T和激励算子R_μ进行了概括,以便针对感兴趣的所选多电子相关效应,可以校正在T和R_μ中任意截断获得的CC / EOMCC能量。由此产生的力矩扩展定义了新的,灵活的MMCC(Flex-MMCC)形式主义,并在本工作中提出了随之而来的CC(P; Q)层次结构,使人们能够校正在活动空间CC和EOMCC计算中获得的能量,其中通过活动轨道选择T和R_μ的更高的多体成分,并且在涉及沿着键断裂坐标的势能面(PES)的应用中,它们会恢复许多相关的非动力学和一些动力学电子相关效应。有效空间CC / EOMCC注意事项中缺少的高阶(主要是动态)相关性的影响。对活动空间CC / EOMCC能量的Flex-MMCC校正在数学上类似于定义现有左本征态CR-CC和CR-EOMCC方法的非迭代能量校正,例如CR-CC(2,3)和CR-EOMCC(2,3)。通过描述新型CC混合方案(缩写为CC(t; 3))的初始实现和数值测试,可以说明Flex-MMCC和CC(P; Q)形式主义的潜在优势。对于CCSDt考虑因素中缺少但存在于基于MMCC的CR-CC(2,3)方法中的连接的三重激发所产生的剩余影响,使用具有单重,双重和活动空间三重的CC计算(称为CCSDt) 。通过检查HF,F _2和F2 +分子中的键断裂,可以证明CC(t; 3)方法改善了CCSDt和CR-CC(2,3)的结果,从而提供了与通过该方法获得的PES一致的PES。完整的CC理论,具有单,双和三重(CCSDT),仅占毫分数的一小部分,而CCSDT计算的计算机成本却很小。讨论了在CC(t; 3)方案和基本CCSDt方法中定义活动空间三元组的不同策略。当仅限于基态问题时,CC(t; 3)方法可以看作是对最近提出的CCSD(T)-h方法的改进和严格推导的扩展[J.沉娥,徐旭,寇正,李升,化学学报。物理132(2010)114115],其中CCSD(T)类型的三重校正被其更强大的CR-CC(2,3)型类似物所取代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号